Smarty - the compiling PHP template engine

Monte Ohrt <monte@ispi.net>

Andrei Zmievski <andrei@php.net>

Smarty - the compiling PHP template engine
by Monte Ohrt <monte@ispi.net> and Andrei Zmievski <andrei@php.net>

Version 2.0 Edition
Copyright © 2001, 2002 by ispi of Lincoln, Inc.

Table of Contents

Preface i
I. Getting Started 1
1. What is SMArty?......coviiiiiiiiccce s 1
B a1 71 1 =1 5o) o WU 3
Requirements ... 3
Basic INStAllAtion c....coovveeeeeieeeeeeeeee e 3
Extended Setup ... 5

II. Smarty For Template Designers 7
3. Basic SYNtaX......cooiiiiiiiiiiiiiic e 7
COMUMEIIES ...ttt e ettt e e e et e e e e s eaaeeeeessasaeeeesssnraeeeesennaneessssnnneees 7
FUNCHONS ..ottt e e e snaaeees 7
ATTIDULES ..ottt et et s et e e teeereeenaeens 7
Embedding Vars in Double QUOteScccooiiiiiiiiiiiiiiicccnce, 8

Y =1 o) (< SRR 9
Variables assigned from PHP............cccoviiiiiiiiirreccccceenes 9
Variables loaded from config files..........cccooveiiiiiiiiiiiiiicce, 10
{$smarty} reserved variable............cccooiiiniiniiiii 12

5. Variable MOAIfIOISccuiiuiieiiieeeceeeeeeteeeeee ettt ettt et eaeeas 15
CAPILALIZE ..o 15
COUNE_CRATACEETS ..ottt eae et e et eesaaeessraeesraeesnnaeas 15

AL ettt et e et e e e e aa e e e e e e abaaee e e arareeeentaraaeeennraes 16
COUNt_ParagraphiS.......cciiiiiiiiiiiiiiiiiii e 16
COUNE_SEIEEIICEScooeeeeeiiririrereeeeeeeeeeeeeeeeecirrrarereeeeeeeeeeeeesessssssssrereereeeeeesesenens 17
COUNE_WOTAS .ttt et e et eeaeeseteeeeateeeeaeesseseeeseseesesseeseseessseesannens 17

f6 F=X <300 (0 a0 o V= 0RO RSO 17

[<5 221 1 K PR 20
ESCAPE «..vivvrinietesierese ettt et a e a e n e re e 20

i q Yo <) o X SRRSO 21

|10} 75 PR 22

01 124 o3 SRRSO 22
TEZEX_TEPLACE ...t 23
TEPIACE vt 23
SPACIEY .. 24
SEHANG fOrmMAt.....ccoiiiiiiiii 24

SEIIP ottt 25
SEIP_tAZS o ovevietiieiciee 25

L5 401 g Tar= X (IO 26
UPPET ottt ettt ettt ettt ettt ettt bbb ettt b et bttt 27
WOTAWTAP ..ottt 27

6. Combining MOdifiers..........cccovviiiiiiiiiiiiic s 29
7. BULt-IN FUNCHONS ..ottt 31
CAPLULC ...ttt 31
config 1oad ..o 31
foreach,fOreachelSeccoovvieiiieiiiiiiceceeceee e 33

F1 4 el 1 T (<SRRI 34
INCIUAE_PRP ..o 35
ITUSEIT cevvveiee ettt ettt eert e e e eett e e e eerareeeeeeaaaeeeeenabaeeeeenaareeeeeetareeeeenanaees 36

I) FTS <) 1SR 38

| T L3 F3 415 4'e 11 ' o OO OO U USSR 39
R3-SR 39

PR e 40
SECHON,SECHOMNELSE.....ecveeveieerieteeetee ettt et et ereeeaeeeaeas 40

SEIIP ot 48

8. CUSLOM FUNCHIONS ...ttt eeane e ennees 49
ASSIZIL oottt ettt ettt ettt re s 49
COUNEET .. ttttrireieeeeeeeeeeeeeeecccrrerereeeeeeeeeeeeesesnsssrssarereraseseeseesesenssssssrarensasaaeeeessannens 49
CYCLE o 50

CVAL ettt e ettt e et e e et e e et t e e s bt e s e ateearaeeesrteesaaneas 51

< o] o NPT 52

NEMNL CECKDOXES ...ttt eeateeeeaeeeseaeeseneeseaeeseaeeseane 53
html ImMage.....cccovviiiiiiiii e 54
html OpHONS......coeviiiiiiii e 55

BN TAATOS ettt ettt et e et eeeeaeeessaeeseneeseaeesenaeeseane 57

X 00 o1 ST (<Tet die I L < I OROTRRRRRRORRRRORN 58

X0 01 IECT) (<Tot Al w1 s L= RS RRRRRRRN 62

BN EADLE ettt e et e et e e e e e s eseneeseaeeeeaeenane 65
1007211 o DTSRRI 66

10 07211 £ JUUR PR 68
POPUP_INIE oviiiiiiieic s 69
POPUP oottt bbb 69

LS5 <5 (0) 0 0 1 V=X O PRR 75

9. CONIG FALES....oecccc e 79
10. Debugging COonsole...........cccccuiuiiriiiiiiiiininiiiiiii s 81
III. Smarty For Programmers 83
B Q0 4 1] 7= | £ TR 83
SIMARTY _DIR ...ttt ettt ea et e et e aeeeaeesaeesaeas 83
2V U =1 o) LSRR 85
Btemplate_dir ... 85
Seompile_dir......cooiiiiiiiiii e 85
BCONTIG AT ..o 85
BPIUGINS AT .. 85
BAEbUGGING ... 85
BAEDUEG P .o 86
Bdebug@ing Ctrl ... 86
Bglobal_assignccciuiiiiiiiiiiiiiiiiiii e 86
SUNAEIINEd ...ttt ettt et saeeeaeas 86
BAULOLOAA_FIIEOT'S ..ottt ettt e e e e ae e e eraeeesaaeesnneas 86
$compile_check ... 86
BEOTCE_COMPILE ...t 87
BCACKINE. ... 87

el el o TSI b TR 87
BCACHE_LHfOHIMO....eviieiieeiieee ettt et saeeeaees 87
Fcache handler fUNC.....oo.oooeiiieeeee ettt sae e seaneas 88
$cache mModified _CheCKcc..ooiiiieeiiieeeeeeeeee e 88
BCONTIG_OVEIWTILE ...ttt 88
$config _booleanizecccccuiuiiiiiiiiiiiiiiiiiiii e 88
$config_read_hidden.........ccccoviiiiiiiiiiiiii, 88
$config fiX NEWINES.......ccceuiuimiiiiiiiiiiirr e 88
$default_template_handler_func ..., 89
Sphp_handling ... 89
BSECUIIEY .t 89
BOOCUTE AT vttt e et e st e e st e e et e e s et e esseeseaseeseraeessnneesnaeas 89
$security_SEttiNgs ..o 89
BTSSR QAT ettt et e et eeaeeeeeeeeeeaeeseaeeseraeeesneeseaneas 90

Bleft AEIIIMIET .oeieeeeieeeeeeee ettt et e et e s ea e e s eraeeesaaeesnaeas 90
$right delimiter ..o 90
BCOMPILET_ClaSS ...t 90
Prequest_vars_OTder ... 90
Beompile_id ... 90
BUSE_ SUD TS eeieeeeeeeeeeeeeeeeeeee ettt e et e e eteeeeaeeeeeeeeesseeserneesaraeessnneessnnens 90
SAefattlt MOAIFICTS.....eeeieeieeeee ettt e e rae e e eaaeesnaeas 90

G T 14 Vo Yo LSRR 93
APPEIN. .. 93
append_by_Tef ... 93

ASSIGN_DY_Tef .o 94

clear_all asSIIN ... 94
Clear_All CACRE.ooiieeeeeeeeeeee e 95
ClEeAT_ASSIZIN...oueuieieiieiicccccc e 95
CleAT CACRIC ..o ettt ettt et e e eaa e e e sae e saaeas 95
clear_compiled_tpl ... 96
Clear_CONTIG ..o 96
Config 1oadcccoviiiiiiiii e 96
AISPIAY 1ot 97
< (el o RSP SRR 98
Get_CONFIZ VATS ..o 99
get_registered_Object ..o 99
get_tempPlate_VarsS........c.ccociiiiiiiiiier e 99
IS_CACKE ...ttt ettt e et sae e e st e enne 100
oY= o IS 51K <3 R RRRRPR 100
1eZISTEr_DIOCK ...oeeiec e 101
register_compiler_functionccccccevvvviiiinnnnin 101
register_funCtion ... 101
register_MOIfier..........cooiiiiiiiiiiiir e 102
regiSter_ODJECtceuiiiiiiiiciic e 102
register_outputfilter ... 102
register_POSILLETocoiiiiiiciccc e 102
register_Prefilter........iiiiiiiiie 103
TEZISLOT_T@SOUICE ...ovivieierretetiniiete ettt 103
HAZEEI_EITOT oot 103
template_eXistS.........ccoiiiiiiiiiiiii e 103
unregister_block ... 104
unregister_compiler_function............ccccoevviiinnnnniniiccccceeens 104
unregister_function ... 104
unregister_MOdifier ... 104
UNTEGIStEr_ODJECE ... 104
unregister_outputfilter............ccoooiiiiiiiiiiiii 105
unregister_POStiilter ... 105
unregister_Prefilter.........i e 105
UNTEZISTOT_T@SOUICE ...ttt e 105
14, CaChING ..o s 107
Setting Up Caching........ccccceiiuiiiiiiiiiiiiircccnincceccccceenee e 107
Multiple Caches Per Page..........cccccceuviviiiiiiiiiiniiiiiiiicccca 109
Cache GIroUPS ...t 110
15. AdVaNCed FEAtULESocviieveeeeeieeieeeeeeeeeeeeeeeeeee ettt enee s 111
ODJECES ..o 111
PrOIIEOTS ..ottt ettt ettt et st ae s 111
0T 5 1 <) o< SRR 112
Output FAIEErS ... 112
Cache Handler FUNCHON.........oooviiieieiceee e 113
RESOUICES ...t e e e e e e arae e e e ennees 115
16. Extending Smarty With Plugins.............ccooeniiiiiiic 119
How PIugins WOIKcccviiiiiiiiiieiccn e 119
Naming Conventions ..o 119
WIING PIUGINS ..o 120
Template FUNCHONScvuiiiiiiiiiiieicicc e 120
A CaTe BT TS =TT 121
BLOCK FUNCHONS ...ttt sttt et e e saae e snaeeenes 123
Compiler FUNCHONScoiiiiiiiiciicecc e 123
Prefilters /POSHIIEETS . .ooieeieeeeee ettt ettt eaeeesaeeeeane 124
Output FAIterscuovii 125
RESOUICES ...ttt e et eeeearaeeeeesnees 126
YT = U 127

IV. Appendixes 129

17. TroubleShOOtNG. ..o 129
Smarty /PHP €ITOTScovviiiiiiiiiiiiiiiciciicc e 129
18. TIPS & THICKS.couueuiuieieiiiccicicccc s 131
Blank Variable Handlingccccccovvviiiiniiiiiccccccce, 131
Default Variable Handlingcoooeiiiiiniiiiicccc, 131
Passing variable title to header templatec.cocoeeeiviiiciiiiiciccennn, 131
DAteS ... e 132
WAP /WML ..o 133
Componentized Templates.........ccccccueuruririirrnininnriieccccceeee e 134
Obfuscating E-mail Addressesccccoureieieicniniiiciciccece, 135
19. RESOUICESvvvnietetcec ettt 137

Preface

It is undoubtedly one of the most asked questions on the PHP mailing lists: how do
I make my PHP scripts independent of the layout? While PHP is billed as "HTML
embedded scripting language", after writing a couple of projects that mixed PHP
and HTML freely one comes up with the idea that separation of form and content is
a Good Thing [TM]. In addition, in many companies the roles of layout designer and
programmer are separate. Consequently, the search for a templating solution ensues.

In our company for example, the development of an application goes on as follows:
After the requirements docs are done, the interface designer makes mockups of the
interface and gives them to the programmer. The programmer implements business
logic in PHP and uses interface mockups to create skeleton templates. The project
is then handed off to the HTML designer/web page layout person who brings the
templates up to their full glory. The project may go back and forth between program-
ming/HTML a couple of times. Thus, it's important to have good template support
because programmers don’t want anything to do with HTML and don’t want HTML
designers mucking around with PHP code. Designers need support for config files,
dynamic blocks and other interface issues, but they don’t want to have to deal with
intricacies of the PHP programming language.

Looking at many templating solutions available for PHP today, most of them provide
a rudimentary way of substituting variables into templates and do a limited form of
dynamic block functionality. But our needs required a bit more than that. We didn’t
want programmers to be dealing with HTML layout at ALL, but this was almost
inevitable. For instance, if a designer wanted background colors to alternate on dy-
namic blocks, this had to be worked out with the programmer in advance. We also
needed designers to be able to use their own configuration files, and pull variables
from them into the templates. The list goes on.

We started out writing out a spec for a template engine back in late 1999. After fin-
ishing the spec, we began to work on a template engine written in C that would
hopefully be accepted for inclusion with PHP. Not only did we run into many com-
plicated technical barriers, but there was also much heated debate about exactly what
a template engine should and should not do. From this experience, we decided that
the template engine should be written in PHP as a class, for anyone to use as they
see fit. So we wrote an engine that did just that and SmartTemplate came into exis-
tence (note: this class was never submitted to the public). It was a class that did al-
most everything we wanted: regular variable substitution, supported including other
templates, integration with config files, embedding PHP code, limited "if” statement
functionality and much more robust dynamic blocks which could be multiply nested.
It did all this with regular expressions and the code turned out to be rather, shall we
say, impenetrable. It was also noticably slow in large applications from all the pars-
ing and regular expression work it had to do on each invocation. The biggest problem
from a programmer’s point of view was all the necessary work in the PHP script to
setup and process templates and dynamic blocks. How do we make this easier?

Then came the vision of what ultimately became Smarty. We know how fast PHP
code is without the overhead of template parsing. We also know how meticulous
and overbearing the PHP language may look to the average designer, and this could
be masked with a much simpler templating syntax. So what if we combined the two
strengths? Thus, Smarty was born...

Preface

ii

Chapter 1. What is Smarty?

Smarty is a template engine for PHP. More specifically, it facilitates a manageable way
to separate application logic and content from its presentation. This is best described
in a situation where the application programmer and the template designer play dif-
ferent roles, or in most cases are not the same person. For example, let’s say you
are creating a web page that is displaying a newspaper article. The article headline,
tagline, author and body are content elements, they contain no information about
how they will be presented. They are passed into Smarty by the application, then the
template designer edits the templates and uses a combination of HTML tags and tem-
plate tags to format the presentation of these elements (HTML tables, background
colors, font sizes, style sheets, etc.) One day the programmer needs to change the
way the article content is retrieved (a change in application logic.) This change does
not affect the template designer, the content will still arrive in the template exactly
the same. Likewise, if the template designer wants to completely redesign the tem-
plates, this requires no changes to the application logic. Therefore, the programmer
can make changes to the application logic without the need to restructure templates,
and the template designer can make changes to templates without breaking applica-
tion logic.

Now for a short word on what Smarty does NOT do. Smarty does not attempt to
completely separate logic from the templates. There is no problem with logic in your
templates under the condition that this logic is strictly for presentation. A word of
advice: keep application logic out of the templates, and presentation logic out of the
application. This will most definately keep things manageable and scalable for the
foreseeable future.

One of the unique aspects about Smarty is the template compling. This means
Smarty reads the template files and creates PHP scripts from them. Once they are
created, they are executed from then on. Therefore there is no costly template file
parsing for each request, and each template can take full advantage of PHP
compiler cache solutions such as Zend Accelerator (http://www.zend.com) or PHP
Accelerator (http:/ /www.php-accelerator.co.uk).

Some of Smarty’s features:

« Itis extremely fast.

o Itis efficient since the PHP parser does the dirty work.

» No template parsing overhead, only compiles once.

« Itis smart about recompiling only the template files that have changed.

* You can make custom functions and custom variable modifiers, so the template
language is extremely extensible.

» Configurable template delimiter tag syntax, so you can use {}, {{}}, <!--{}-->, etc.

 The if/elseif/else/endif constructs are passed to the PHP parser, so the {if ...} ex-
pression syntax can be as simple or as complex as you like.

+ Unlimited nesting of sections, ifs, etc. allowed.

« It is possible to embed PHP code right in your template files, although this may
not be needed (nor recommended) since the engine is so customizable.

¢ Built-in caching support
* Arbitrary template sources
¢ Custom cache handling functions

« Plugin architecture

Chapter 1. What is Smarty?

Chapter 2. Installation

Requirements

Smarty requires a web server running PHP 4.0.6 or later.

Basic Installation

Install the Smarty library files which are in the /libs/ directory of the distribution.
These are the PHP files that you SHOULD NOT edit. They are shared among all ap-
plications and they only get updated when you upgrade to a new version of Smarty.

Example 2-1. Smarty library files

Smarty.class.php
Smarty_Compiler.class.php
Config_File.class.php
debug.tpl

Iplugins/*.php (all of them!)

Smarty uses a PHP constant named SMARTY_DIR which is the system filepath
Smarty library directory. Basically, if your application can find the Smarty.class.php
file, you do not need to set SMARTY_DIR, Smarty will figure it out on its own.
Therefore, if Smarty.class.php is not in your include_path, or you do not supply
an absolute path to it in your application, then you must define SMARTY_DIR
manually. SMARTY_DIR must include a trailing slash.

Here is how you create an instance of Smarty in your PHP scripts:

Example 2-2. Create Smarty instance of Smarty

require('Smarty.class.php’);
$smarty = new Smarty;

Try running the above script. If you get an error saying the Smarty.class.php file could
not be found, you have to do one of the following:

Example 2-3. Supply absolute path to library directory

require(’/usr/local/lib/php/Smarty/Smarty.class.php’);
$smarty = new Smarty;

Example 2-4. Add library directory to php_include path

/I Edit your php.ini file, add the Smarty library

/I directory to the include_path and restart web server.
/I Then the following should work:
require('Smarty.class.php’);

$smarty = new Smarty;

Example 2-5. Set SMARTY_DIR constant manually

define(SMARTY_DIR’,’/usr/local/lib/php/Smarty/’);
require(SMARTY_DIR.’Smarty.class.php’);
$smarty = new Smarty;

Now that the library files are in place, it’s time to setup the Smarty directories for your
application. Smarty requires four directories which are (by default) named templates,

3

Chapter 2. Installation

templates_c, configs and cache. Each of these are definable by the Smarty class prop-
erties $template_dir, $compile_dir, $config_dir, and $cache_dir respectively. It is highly
recommended that you setup a separate set of these directories for each application
that will use Smarty.

Be sure you know the location of your web server document root. In our example, the
document root is "/web/www.mydomain.com/docs/". The Smarty directories are
only accessed by the Smarty library and never accessed directly by the web browser.
Therefore to avoid any security concerns, it is recommended to place these directories
in a directory off the document root.

For our installation example, we will be setting up the Smarty environment for a
guest book application. We picked an application only for the purpose of a direc-
tory naming convention. You can use the same environment for any application, just
replace "guestbook” with the name of your app. We’ll place our Smarty directories
under "/web/www.mydomain.com/smarty/guestbook/".

You will need as least one file under your document root, and that is the script ac-
cessed by the web browser. We will call our script "index.php", and place it in a sub-
directory under the document root called "/guestbook/". It is convenient to setup the
web server so that "index.php" can be identified as the default directory index, so if
you access "http:/ /www.mydomain.com/guestbook/", the index.php script will be
executed without "index.php" in the URL. In Apache you can set this up by adding
"index.php" onto the end of your Directorylndex setting (separate each entry with a
space.)

Lets take a look at the file structure so far:

Example 2-6. Example file structure

usr/locall/lib/php/Smarty/Smarty.class.php
/usr/local/lib/php/Smarty/Smarty_Compiler.class.php
lusr/local/lib/php/Smarty/Config_File.class.php
lusr/local/lib/php/Smarty/debug.tpl
lusr/local/lib/php/Smarty/plugins/*.php

/web/www.mydomain.com/smarty/guestbook/templates/
/web/www.mydomain.com/smarty/guestbook/templates_c/
/web/www.mydomain.com/smarty/guestbook/configs/
/web/www.mydomain.com/smarty/guestbook/cache/

/web/www.mydomain.com/docs/guestbook/index.php

Smarty will need write access to the $compile_dir and $cache_dir, so be sure the web
server user can write to them. This is usually user "nobody" and group "nobody". For
OS X users, the default is user "web" and group "web". If you are using Apache, you
can look in your httpd.conf file (usually in "/usr/local/apache/conf/") to see what
user and group are being used.

Example 2-7. Setting file permissions

chown nobody:nobody /web/www.mydomain.com/smarty/templates_c/
chmod 770 /web/www.mydomain.com/smarty/templates_c/

chown nobody:nobody /web/www.mydomain.com/smarty/cache/
chmod 770 /web/www.mydomain.com/smarty/cache/

Technical Note: chmod 770 will be fairly tight security, it only allows user "nobody" and
group "nobody" read/write access to the directories. If you would like to open up read
access to anyone (mostly for your own convenience of viewing these files), you can use
775 instead.

Chapter 2. Installation

We need to create the index.tpl file that Smarty will load. This will be located in your
$template_dir.

Example 2-8. Editing /web/www.mydomain.com/smarty/templates/index.tpl
{* Smarty *}

Hello, {$name}!

Technical Note: {* Smarty *}is a template comment. It is not required, but it is good prac-
tice to start all your template files with this comment. It makes the file easy to recognize
regardless of the file extension. For example, text editors could recognize the file and turn
on special syntax highlighting.

Now lets edit index.php. We’ll create an instance of Smarty, assign a
template variable and display the index.tpl file. In our example environment,
"/usr/local/lib/php/Smarty" is in our include_path. Be sure you do the same, or
use absolute paths.

Example 2-9. Editing /web/www.mydomain.com/docs/guestbook/index.php

/I load Smarty library
require('Smarty.class.php’);

$smarty = new Smarty;

$smarty->template_dir = ’/web/www.mydomain.com/smarty/guestbook/templates/’;
$smarty->compile_dir = '/web/www.mydomain.com/smarty/guestbook/templates_c/’;
$smarty->config_dir = '/web/www.mydomain.com/smarty/guestbook/configs/’;
$smarty->cache_dir = '/web/www.mydomain.com/smarty/guestbook/cache/’;

$smarty->assign('name’,’Ned’);

$smarty->display(index.tpl’);

Technical Note: In our example, we are setting absolute paths to all of the Smarty direc-
tories. If '/web/www.mydomain.com/smarty/guestbook/ is within your PHP include_path,
then these settings are not necessary. However, it is more efficient and (from experience)
less error-prone to set them to absolute paths. This ensures that Smarty is getting files
from the directories you intended.

Now load the index.php file from your web browser. You should see "Hello, Ned!"

You have completed the basic setup for Smarty!

Extended Setup
This is a continuation of the basic installation, please read that first!

A slightly more flexible way to setup Smarty is to extend the class and initialize
your Smarty environment. So instead of repeatedly setting directory paths, assign-
ing the same vars, etc.,, we can do that in one place. Lets create a new directory
"/php/includes/guestbook/" and make a new file called "setup.php". In our exam-
ple environment, "/php/includes" is in our include_path. Be sure you set this up too,
or use absolute file paths.

Chapter 2. Installation

Example 2-10. Editing /php/includes/guestbook/setup.php

/I load Smarty library
require('Smarty.class.php’);

/I The setup.php file is a good place to load

/I required application library files, and you

/Il can do that right here. An example:

/I require(’guestbook/guestbook.lib.php’);

class Smarty GuestBook extends Smarty {
function Smarty GuestBook() {

/I Class Constructor. These automatically get set with each new instance.

$this->Smarty();
$this->template_dir = ’/web/www.mydomain.com/smarty/guestbook/templates/’;
$this->compile_dir = '/web/www.mydomain.com/smarty/guestbook/templates_c/’;
$this->config_dir = '/web/www.mydomain.com/smarty/guestbook/configs/’;
$this->cache_dir = '/web/www.mydomain.com/smarty/guestbook/cache/’;
$this->caching = true;
$this->assign(‘app_name’,’Guest Book’);

}
Now lets alter the index.php file to use setup.php:

Example 2-11. Editing /web/www.mydomain.com/docs/guestbook/index.php
require('guestbook/setup.php’);

$smarty = new Smarty_GuestBook;

$smarty->assign('name’,'Ned’);

$smarty->display(index.tpl’);

Now you see it is quite simple to bring up an instance of Smarty, just use
Smarty_GuestBook which automatically initializes everything for our application.

Chapter 3. Basic Syntax

All Smarty template tags are enclosed within delimiters. By default, these delimiters
are { and }, but they can be changed.

For these examples, we will assume that you are using the default delimiters. In
Smarty, all content outside of delimiters is displayed as static content, or unchanged.
When Smarty encounters template tags, it attempts to interpret them, and displays
the appropriate output in their place.

Comments

Template comments are surrounded by asterisks, and that is surrounded by the de-
limiter tags like so: {* this is a comment *} Smarty comments are not displayed in the
final output of the template. They are used for making internal notes in the templates.

Example 3-1. Comments
{* Smarty *}

{* include the header file here *}
{include file="header.tpl"}

{include file=$includeFile}
{include file=#includeFile#}

{* display dropdown lists *}

<SELECT name=company>

{html_options values=$vals selected=$selected output=Soutput}
</SELECT>

Functions

Each Smarty tag either prints a variable or invokes some sort of function. Functions
are processed and displayed by enclosing the function and its attributes into delim-
iters like so: {funcname attr1="val" attr2="val"}.

Example 3-2. function syntax
{config_load file="colors.conf"}
{include file="header.tpl"}

{if $name eq "Fred"}

You are not allowed here

{else}

Welcome, {$name}!

{lif}
{include file="footer.tpl"}

Both built-in functions and custom functions have the same syntax in the templates.
Built-in functions are the inner workings of Smarty, such as if, section and strip. They
cannot be modified. Custom functions are additional functions implemented via plu-
gins. They can be modified to your liking, or you can add new ones. html_options
and html_select_date are examples of custom functions.

Chapter 3. Basic Syntax

Attributes

Most of the functions take attributes that specify or modify their behavior. Attributes
to Smarty functions are much like HTML attributes. Static values don’t have to be
enclosed in quotes, but it is recommended for literal strings. Variables may also be
used, and should not be in quotes.

Some attributes require boolean values (true or false). These can be specified as either
unquoted true , on, and yes, or false , off , and no.

Example 3-3. function attribute syntax
{include file="header.tpl"}

{include file=$includeFile}

{include file=#includeFile#}
{html_select_date display_days=yes}
<SELECT name=company>

{html_options values=$vals selected=$selected output=Soutput}
<ISELECT>

Embedding Vars in Double Quotes

Smarty will recognize assigned variables embedded in double quotes so long as the
variables contain only numbers, letters, underscores and brackets []. With any other
characters (period, object reference, etc.) the variable must be surrounded by back-
ticks.

Example 3-4. embedded quotes syntax

SYNTAX EXAMPLES:

{func var="test $foo test"} <-- sees $foo

{func var="test $foo_bar test"} <-- sees $foo_bar

{func var="test $foo[0] test"} <-- sees $foo[0]

{func var="test $foo[bar] test"} <-- sees $foo[bar]

{func var="test $foo.bar test"} <-- sees $foo (not $foo.bar)

{func var="test ‘$foo.bar' test"} <-- sees $foo.bar

PRACTICAL EXAMPLES:

{include file="subdir/$tpl_name.tpl"} <-- will replace $tpl_name with value
{cycle values="one,two, $smarty.config.myval"?} <-- must have backticks

Chapter 4. Variables

Smarty has several different types of variables. The type of the variable depends on
what symbol it is prefixed with (or enclosed within).

Variables in Smarty can be either displayed directly or used as arguments for func-
tion attributes and modifiers, inside conditional expressions, etc. To print a variable,
simply enclose it in the delimiters so that it is the only thing contained between them.
Examples:

{$Name}
{$Contacts[row].Phone}

<body bgcolor="{#bgcolor#}" >

Variables assigned from PHP

Variables that are assigned from PHP are referenced by preceding them with a dollar
sign $. Variables assigned from within the template with the assign function are also
displayed this way.

Example 4-1. assigned variables

Hello {$firsthame}, glad to see you could make it.
<p>
Your last login was on {$lastLoginDate}.

OUTPUT:

Hello Doug, glad to see you could make it.
<p>
Your last login was on January 11th, 2001.

Associative arrays

You can also reference associative array variables that are assigned from PHP by
specifying the key after the ".” (period) symbol.

Example 4-2. accessing associative array variables
index.php:

$smarty = new Smarty;
$smarty- >assign('Contacts’,
array(fax’ => '555-222-9876’,
‘email’ => 'zaphod@slartibartfast.com’,
‘phone’ => array(home’ => '555-444-3333’,
‘cell => '555-111-1234")));
$smarty- >display(index.tpl’);

index.tpl:

{$Contacts.fax}

{$Contacts.email}

{* you can print arrays of arrays as well *}
{$Contacts.phone.home}

{$Contacts.phone.cell}

OUTPUT:

Chapter 4. Variables

555-222-9876

zaphod@slartibartfast.com

555-444-3333

555-111-1234

Array indexes

You can reference arrays by their index, much like native PHP syntax.

Example 4-3. accessing arrays by index
index.php:

$smarty = new Smarty;
$smarty- >assign(’Contacts’,
array(’555-222-9876’,
'zaphod@slartibartfast.com’,
array('555-444-3333’,
'555-111-1234")));
$smarty- >display(index.tpl’);

index.tpl:
{$Contacts[0]}

{$Contacts[1]}

{* you can print arrays of arrays as well *}

{$Contacts[2][0]}

{$Contacts[2][1]}

OUTPUT:

555-222-9876

zaphod@slartibartfast.com

555-444-3333

555-111-1234

Objects

Properties of objects assigned from PHP can be referenced by specifying the property
name after the ’->" symbol.

Example 4-4. accessing object properties

name: {$person- >name}

email: {$person- >email}

OUTPUT:

name: Zaphod Beeblebrox

email: zaphod@slartibartfast.com

10

Chapter 4. Variables

Variables loaded from config files

Variables that are loaded from the config files are referenced by enclosing them within
hash marks (#), or with the smarty variable $smarty.config. The second syntax is use-
ful for embedding into quoted attribute values.

Example 4-5. config variables
foo.conf:

pageTitle = "This is mine"
bodyBgColor = "#eeeeee"
tableBorderSize = "3"
tableBgColor = "#bbbbbb"
rowBgColor = "#ccccec"

index.tpl:

{config_load file="foo.conf"}

<html >

<title >{#pageTitle#} <[title >
<body bgcolor="{#bodyBgColor#}" >
<table border="{#tableBorderSize#}" bgcolor="{#tableBgColor#}" >
<tr bgcolor="{#rowBgColor#}" >
<td >First </td >

<td >Last </td >

<td >Address </td >

<fr >

<[ltable >

</body >

</html >

index.tpl: (alternate syntax)

{config_load file="foo.conf"}

<html >

<titte >{$smarty.config.pageTitle} </title >

<body bgcolor="{$smarty.config.bodyBgColor}" >

<table border="{$smarty.config.tableBorderSize}" bgcolor="{$smarty.config.tableBgColor}"
<tr bgcolor="{$smarty.config.rowBgColor}" >

<td >First </td >
<td >Last </td >
<td >Address </td >
</tr >

</table >

</body >

</html >

OUTPUT: (same for both examples)

<html >

<title >This is mine <ftitle >

<body bgcolor="#eeeeee" >

<table border="3" bgcolor="#bbbbbb" >
<tr bgcolor="#cccccc" >

<td >First </td >
<td >Last </td >
<td >Address </td >
<ltr >

</table >

</body >

</html >

11

Chapter 4. Variables

Conlfig file variables cannot be used until after they are loaded in from a config file.
This procedure is explained later in this document under config_load.

{$smarty} reserved variable

12

The reserved {$smarty} variable can be used to access several special template vari-
ables. The full list of them follows.

Request variables

The request variables such as get, post, cookies, server, environment, and session
variables can be accessed as demonstrated in the examples below:

Example 4-6. displaying request variables

{* display value of page from URL (GET) http://www.domain.com/index.php?page=foo *}
{$smarty.get.page}

{* display the variable "page" from a form a form (POST) *}
{$smarty.post.page}

{* display the value of the cookie "username" *}
{$smarty.cookies.username}

{* display the server variable "SERVER_NAME" *}
{$smarty.server. SERVER_NAME}

{* display the system environment variable "PATH" *}
{$smarty.env.PATH}

{* display the php session variable "id" *}
{$smarty.session.id}

{* display the variable "username" from merged get/post/cookies/server/env *}
{$smarty.request.username}

{$smarty.now}

The current timestamp can be accessed with {$smarty.now}. The number reflects the
number of seconds passed since the so-called Epoch (January 1, 1970) and can be
passed directly to date_format modifier for display purposes.

Example 4-7. using {$smarty.now}

{* use the date_format modifier to show current date and time *}
{$smarty.now|date_format:"%Y-%m-%d %H:%M:%S"}

{$smarty.const}

You can access PHP constant values directly.

Example 4-8. using {$smarty.const}

{$smarty.const._MY_CONST_VAL}

Chapter 4. Variables

{$smarty.capture}

The output captured via {capture}..{/capture} construct can be accessed using
{$smarty]} variable. See section on capture for an example.

{$smarty.config}

{fsmarty} variable can be wused to refer to loaded config variables.
{$smarty.config.foo} is a synonyn for {#foo#]. See the section on config load for an
example.

{$smarty.section}, {$smarty.foreach}

{$smarty} variable can be used to refer to "section” and "foreach’ loop properties. See
docs for section and foreach.

{$smarty.template}

This variable contains the name of the current template being processed.

13

Chapter 4. Variables

14

Chapter 5. Variable Modifiers

Variable modifiers can be applied to variables, custom functions or strings. To ap-
ply a modifier, specify the value followed by the | (pipe) and the modifier name. A
modifier may accept additional parameters that affect its behavior. These parameters
follow the modifer name and are separated by : (colon).

Example 5-1. modifier example

{* Uppercase the title *}
<h2>{$title|upper} </h2 >

{* Truncate the topic to 40 characters use ... at the end *}
Topic: {$topic|truncate:40:"..."}

{* format a literal string *}
{"now"|date_format:"%Y/%m/%d"}

{* apply modifier to a custom function *}
{mailto|upper address="me@domain.dom"}

If you apply a modifier to an array variable instead of a single value variable, the
modifier will be applied to every value in that array. If you really want the modifier
to work on an entire array as a value, you must prepend the modifier name with an @
symbol like so: {$articleTitle|@count} (this will print out the number of elements
in the $articleTitle array.)

capitalize

This is used to capitalize the first letter of all words in a variable.

Example 5-2. capitalize

index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, 'Police begin campaign to rundown jaywalkers.’);
$smarty- >display(index.tpl’);

index.tpl:

{$articleTitle}
{$articleTitle|capitalize}

OUTPUT:

Police begin campaign to rundown jaywalkers.
Police Begin Campaign To Rundown Jaywalkers.

count_characters

This is used to count the number of characters in a variable.

15

Chapter 5. Variable Modifiers

cat

Example 5-3. count_characters
index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, 'Cold Wave Linked to Temperatures.’);

$smarty- >display(index.tpl’);

index.tpl:

{$articleTitle}

{$articleTitle|count_characters}

OUTPUT:

Cold Wave Linked to Temperatures.

32

Parameter Type Required cat Description
Position
1 string No empty This value to

catentate to the
given variable.

This value is catenated to the given variable.

Example 5-4. cat
index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, 'Psychics predict world didn't end’);

$smarty- >display(index.tpl’);
index.tpl:
{$articleTitle|cat:" yesterday."}
OUTPUT:

Psychics predict world didn't end yesterday.

count_paragraphs

16

This is used to count the number of paragraphs in a variable.

Example 5-5. count_paragraphs
index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, 'War Dims Hope for Peace. Child’s Death Ru-

ins Couple’s Holiday.");
$smarty- >display(index.tpl’);

index.tpl:

Chapter 5. Variable Modifiers

{$articleTitle}
{$articleTitle|count_paragraphs}

OUTPUT:
War Dims Hope for Peace. Child’'s Death Ruins Couple’'s Holiday.

Man is Fatally Slain. Death Causes Loneliness, Feeling of Isolation.
2

count_sentences

This is used to count the number of sentences in a variable.

Example 5-6. count_sentences

index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, 'Two Soviet Ships Collide - One Dies. En-
raged Cow Injures Farmer with Axe.);

$smarty- >display(index.tpl’);

index.tpl:

{$articleTitle}
{$articleTitle|count_sentences}

OUTPUT:

Two Soviet Ships Collide - One Dies. Enraged Cow Injures Farmer with Axe.

2

count_words

This is used to count the number of words in a variable.

Example 5-7. count_words

index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, 'Dealers Will Hear Car Talk at Noon.’);
$smarty- >display(index.tpl’);

index.tpl:

{$articleTitle}
{$articleTitle|count_words}

OUTPUT:

Dealers Will Hear Car Talk at Noon.
7

date_format

17

Chapter 5. Variable Modifiers

18

Parameter Type Required Default Description
Position

1 string No %b %e, %Y [This is the
format for the
outputted date.

2 string No n/a This is the
default date if
the input is
empty.

This formats a date and time into the given strftime() format. Dates can be passed to
Smarty as unix timestamps, mysql timestamps or any string made up of month day
year (parsable by strtotime). Designers can then use date_format to have complete
control of the formatting of the date. If the date passed to date_format is empty and
a second parameter is passed, that will be used as the date to format.

Example 5-8. date_format
index.php:

$smarty = new Smarty;
$smarty- >assign('yesterday’, strtotime(-1 day’));
$smarty- >display(’index.tpl’);

index.tpl:

{$smarty.now|date_format}
{$smarty.now|date_format:"%A, %B %e, %Y"}
{$smarty.now|date_format:"%H:%M:%S"}
{$yesterday|date_format}
{$yesterday|date_format:"%A, %B %e, %Y"}
{$yesterday|date_format:"%H:%M:%S"}

OUTPUT:

Feb 6, 2001

Tuesday, February 6, 2001
14:33:00

Feb 5, 2001

Monday, February 5, 2001
14:33:00

Example 5-9. date_format conversion specifiers

%a - abbreviated weekday name according to the current locale

%A - full weekday name according to the current locale

%b - abbreviated month name according to the current locale

%B - full month name according to the current locale

%c - preferred date and time representation for the current locale

%C - century number (the year divided by 100 and truncated to an inte-

ger, range 00 to 99)

%d - day of the month as a decimal number (range 00 to 31)

%D - same as %m/%d/%y

Chapter 5. Variable Modifiers

%e - day of the month as a decimal number, a single digit is preceded by a
space (range 1 to 31)

%g - Week-based year within century [00,99]

%G - Week-based year, including the century [0000,9999]

%h - same as %b

%H - hour as a decimal number using a 24-hour clock (range 00 to 23)
%I - hour as a decimal number using a 12-hour clock (range 01 to 12)
%j - day of the year as a decimal number (range 001 to 366)

%k - Hour (24-hour clock) single digits are preceded by a blank. (range 0 to 23)
%I - hour as a decimal number using a 12-hour clock, single digits pre-
ceeded by

a space (range 1 to 12)

%m - month as a decimal number (range 01 to 12)

%M - minute as a decimal number

%n - newline character

%p - either ‘am’ or ‘pm’ according to the given time value, or the cor-
responding strings for the current locale

%r - time in a.m. and p.m. notation

%R - time in 24 hour notation

%S - second as a decimal number

%t - tab character

%T - current time, equal to %H:%M:%S

%u - weekday as a decimal number [1,7], with 1 representing Monday

%U - week number of the current year as a decimal number, starting with the first Sun-
day as the first day of the first week

%V - The ISO 8601:1988 week number of the current year as a decimal num-
ber, range 01 to 53, where week 1

is the first week that has at least 4 days in the current year, and with Mon-
day as the first day of the week.

%w - day of the week as a decimal, Sunday being 0

%W - week number of the current year as a decimal number, starting with the first Mon-
day as the first day of the first week

%x - preferred date representation for the current locale without the time
%X - preferred time representation for the current locale without the date
%y - year as a decimal number without a century (range 00 to 99)

%Y - year as a decimal number including the century

%Z - time zone or name or abbreviation

%% - a literal ‘%’ character

19

Chapter 5. Variable Modifiers

default

escape

20

PROGRAMMERS NOTE: date_format is essentially a wrapper to PHP’s strftime()
function. You may have more or less conversion specifiers available depending
on your system’s strftime() function where PHP was compiled. Check your
system’s manpage for a full list of valid specifiers.

Parameter Type Required Default Description
Position
1 string No empty This is the
default value to
output if the
\variable is
empty.

This is used to set a default value for a variable. If the variable is empty or unset, the
given default value is printed instead. Default takes one argument.

Example 5-10. default

index.php:

$smarty = new Smarty;

$smarty-
$smarty-

index.tpl:

{$articleTitle|default:"no title"}
{$myTitle|default:"no title"}

>assign(articleTitle’, 'Dealers Will Hear Car Talk at Noon.’);
>display('index.tpl’);

OUTPUT:
Dealers Will Hear Car Talk at Noon.
no title
Parameter Type Required Possible Default Description
Position Values
1 string No html This is the
html htmlall,yrl,quotes,hex,leseptity,javag
format to
use.

This is used to html escape, url escape, escape single quotes on a variable not already
escaped, hex escape, hexentity or javascript escape. By default, the variable is html

escaped.

Example 5-11. escape

index.php:

cript

Chapter 5. Variable Modifiers

$smarty = new Smarty;

$smarty- >assign(articleTitle’, " Stiff Opposition Expected to Casket-
less Funeral Plan™);

$smarty- >display(index.tpl’);

index.tpl:

{$articleTitle}

{$articleTitle|escape}

{$articleTitle|escape:"html"} {* escapes & "'’ < > %

{$articleTitle|lescape:"htmlall"} {* escapes ALL html entities *}

{$articleTitle|escape:"url"}

{$articleTitle|escape:"quotes"}

{$EmailAddress|escape:"hexentity"} <la >

OUTPUT:

'Stiff Opposition Expected to Casketless Funeral Plan’
'Stiff%200pposition%20Expected%20t0%20Casketless%20Funeral%20Plan’
'Stiff%200pposition%20Expected%20t0%20Casketless%20Funeral%20Plan’
'Stiff%200pposition%20Expected%20t0%20Casketless%20Funeral%20Plan’
'Stiff+Opposition+Expected+to+Casketless+Funeral+Plan’

\'Stiff Opposition Expected to Casketless Funeral PlanV

&#Xx62;o&#Xx62;@m&#Xx65;.€;

indent

Parameter Type Required Default Description

Position

1 integer No 4 This determines
how many
characters to
indent to.

2 string No (one space) This is the
character used
to indent with.

This indents a string at each line, default is 4. As an optional parameter, you can
specify the number of characters to indent. As an optional second parameter, you
can specify the character to use to indent with. (Use "\t" for tabs.)

Example 5-12. indent

index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, 'NJ judge to rule on nude beach.’);
$smarty- >display(index.tpl’);

index.tpl:

{$articleTitle}

{$articleTitle|indent}

{$articleTitle|indent:10}

{$articleTitle|indent:1:"\t"}
21

Chapter 5. Variable Modifiers

lower

nl2br

22

OUTPUT:
NJ judge to rule on nude beach.
Sun or rain expected today, dark tonight.
Statistics show that teen pregnancy drops off significantly after 25.
NJ judge to rule on nude beach.
Sun or rain expected today, dark tonight.
Statistics show that teen pregnancy drops off significantly after 25.
NJ judge to rule on nude beach.
Sun or rain expected today, dark tonight.
Statistics show that teen pregnancy drops off significantly af-
ter 25.
NJ judge to rule on nude beach.

Sun or rain expected today, dark tonight.
Statistics show that teen pregnancy drops off significantly after 25.

This is used to lowercase a variable.

Example 5-13. lower

index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, 'Two Convicts Evade Noose, Jury Hung.');
$smarty- >display(index.tpl’);

index.tpl:

{$articleTitle}
{$articleTitle|lower}

OUTPUT:

Two Convicts Evade Noose, Jury Hung.
two convicts evade noose, jury hung.

All linebreaks will be converted to
 tags in the given variable. This is equiva-
lent to the PHP nl2br() function.

Example 5-14. nl2br

index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, "Sun or rain expected\ntoday, dark tonight");
$smarty- >display(index.tpl’);

index.tpl:

{$articleTitle|nl2br}

OUTPUT:

Chapter 5. Variable Modifiers

Sun or rain expected <br / >today, dark tonight

regex_replace

replace

Parameter Type Required Default Description

Position

1 string Yes n/a This is the
regular
expression to be
replaced.

2 string Yes n/a This is the
string of text to
replace with.

A regular expression search and replace on a variable. Use the syntax for
preg_replace() from the PHP manual.

Example 5-15. regex_replace

index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, "Infertility unlikely to\nbe passed on, ex-
perts say.");

$smarty- >display(index.tpl’);

index.tpl:

{* replace each carriage return, tab & new line with a space *}

{$articleTitle}
{$articleTitle|regex_replace:"/[\r\t\n])/":"* "}

OUTPUT:
Infertility unlikely to

be passed on, experts say.
Infertility unlikely to be passed on, experts say.

Parameter Type Required Default Description

Position

1 string Yes n/a This is the
string of text to
be replaced.

2 string 'Yes n/a This is the
string of text to
replace with.

A simple search and replace on a variable.

23

Chapter 5. Variable Modifiers

Example 5-16. replace

index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, "Child’s Stool Great for Use in Garden.");
$smarty- >display(index.tpl’);
index.tpl:

{$articleTitle}
{$articleTitle|replace:"Garden":"Vineyard"}
{$articleTitle|replace:" ™" "}

OUTPUT:

Child’'s Stool Great for Use in Garden.

Child’s Stool Great for Use in Vineyard.
Child’'s Stool Great for Use in Garden.

spacify
Parameter Type Required Default Description
Position
1 string No one space This what gets
inserted

between each
character of the
variable.

spacify is a way to insert a space between every character of a variable. You can
optionally pass a different character (or string) to insert.

Example 5-17. spacify
index.php:

$smarty = new Smarty;
$smarty- >assign(articleTitle’, 'Something Went Wrong in Jet Crash, Ex-
perts Say.’);

$smarty- >display(index.tpl’);
index.tpl:

{$articleTitle}
{$articleTitle|spacify}
{$articleTitle|spacify:" "}
OUTPUT:

Something Went Wrong in Jet Crash, Experts Say.
Something Went Wrong in Jet Crash, Experts Say

S/\/\OI\/\ml\/\el\/\t/\l\hl\/\i/\/\n/\l\g/\/\ /\/\Wl\/\el\/\n/\/\tl\/\ /\l\WI\/\r/\/\O/\I\nI\/\gI\/\ /\I\il\/\n/\/\ /\/\Jl\l\e/\/\tl\/\ AACAArAAaAASAAhAA,AA /\/\E

string_format

24

strip

Chapter 5. Variable Modifiers

Parameter Type Required Default Description

Position

1 string Yes n/a This is what
format to use.
(sprintf)

This is a way to format strings, such as decimal numbers and such. Use the syntax
for sprintf for the formatting.

Example 5-18. string_format

index.php:

$smarty = new Smarty;

$smarty- >assign(’number’, 23.5787446);
$smarty- >display(index.tpl’);

index.tpl:

{$number}

{$number]|string_format:"%.2f"}
{$number|string_format:"%d"}

OUTPUT:

23.5787446

23.58
24

This replaces all repeated spaces, newlines and tabs with a single space, or with a
supplied string.

Note: If you want to strip blocks of template text, use the strip function.

Example 5-19. strip

index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, "Grandmother of\neight makes\t hole in one.");
$smarty- >display(index.tpl’);
index.tpl:

{$articleTitle}

{$articleTitle|strip}
{$articleTitle|strip:" "}
OUTPUT:

Grandmother of

eight makes hole in one.

Grandmother of eight makes hole in one.
Grandmother of eight makes hole in one.

25

Chapter 5. Variable Modifiers

strip_tags
This strips out markup tags, basically anything between < and >.

Example 5-20. strip_tags
index.php:
$smarty = new Smarty;

$smarty- >assign(articleTitle’, "Blind Woman Gets New Kidney <
$smarty- >display(’index.tpl’);

index.tpl:

{$articleTitle}

{$articleTitle|strip_tags}

OUTPUT:

Blind Woman Gets New Kidney from Dad she Hasn't Seen in

Blind Woman Gets New Kidney from Dad she Hasn't Seen in years.

truncate

Parameter Type Required Default Description
Position

1 integer No 80 This determines
lhow many
characters to
truncate to.

2 string INo This is the text
to append if
truncation
occurs.

3 boolean No false This determines
whether or not
to truncate at a
word boundary
(false), or at the
exact character
(true).

This truncates a variable to a character length, default is 80. As an optional second pa-
rameter, you can specify a string of text to display at the end if the variable was trun-
cated. The characters in the string are included with the original truncation length.
By default, truncate will attempt to cut off at a word boundary. If you want to cut off
at the exact character length, pass the optional third parameter of true.

Example 5-21. truncate
index.php:
$smarty = new Smarty;
$smarty- >assign(articleTitle’, 'Two Sisters Reunite after Eighteen Years at Check-
out Counter.”);
$smarty- >display(index.tpl’);
index.tpl:
26

Chapter 5. Variable Modifiers

{$articleTitle}
{$articleTitle|truncate}
{$articleTitle|truncate:30}
{$articleTitle|truncate:30:""}
{$articleTitle|truncate:30:"---"}
{$articleTitle|truncate:30:"":true}
{$articleTitle|truncate:30:"...":true}

OUTPUT:

Two Sisters Reunite after Eighteen Years at Checkout Counter.
Two Sisters Reunite after Eighteen Years at Checkout Counter.
Two Sisters Reunite after...

Two Sisters Reunite after

Two Sisters Reunite after---

Two Sisters Reunite after Eigh

Two Sisters Reunite after E...

upper

This is used to uppercase a variable.

Example 5-22. upper

index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, "If Strike isn’'t Settled Quickly it may Last a While.");

$smarty- >display(index.tpl’);

index.tpl:

{$articleTitle}

{$articleTitle|upper}

OUTPUT:

If Strike isn't Settled Quickly it may Last a While.

IF STRIKE ISN'T SETTLED QUICKLY IT MAY LAST A WHILE.

wordwrap

Parameter Type Required Default Description

Position

1 integer No 80 This determines
how many
columns to
wrap to.

2 string No \n This is the
string used to
wrap words
with.

27

Chapter 5. Variable Modifiers

Parameter Type Required Default Description
Position
3 boolean No false This determines

whether or not
to wrap at a
word boundary
(false), or at the
exact character
(true).

This wraps a string to a column width, default is 80. As an optional second parameter,
you can specify a string of text to wrap the text to the next line (default is carriage
return \n). By default, wordwrap will attempt to wrap at a word boundary. If you
want to cut off at the exact character length, pass the optional third parameter of true.

Example 5-23. wordwrap

index.php:

$smarty = new Smarty;

$smarty- >assign(articleTitle’, "Blind woman gets new kidney from dad she hasn't seen in years.");
$smarty- >display(’index.tpl’);

index.tpl:

{$articleTitle}

{$articleTitlelwordwrap:30}

{$articleTitlelwordwrap:20}

{$articleTitle|wordwrap:30:"
\n"}
{$articleTitle]wordwrap:30:"\n":true}

OUTPUT:

Blind woman gets new kidney from dad she hasn’t seen in years.
Blind woman gets new kidney

from dad she hasn't seen in

years.

Blind woman gets new

kidney from dad she

hasn’'t seen in

years.

Blind woman gets new kidney

from dad she hasn't seen in years.

Blind woman gets new kidney fr

om dad she hasn't seen in year
S.

28

Chapter 6. Combining Modifiers

You can apply any number of modifiers to a variable. They will be applied in the
order they are combined, from left to right. They must be separated with a | (pipe)
character.

Example 6-1. combining modifiers
index.php:

$smarty = new Smarty;

$smarty- >assign(‘articleTitle’, 'Smokers are Productive, but Death Cuts Efficiency.’);
$smarty- >display(’index.tpl’);

index.tpl:

{$articleTitle}

{$articleTitle|upper|spacify}
{$articleTitle|lower|spacify|truncate}
{$articleTitle|lower]truncate:30|spacify}
{$articleTitle|lower|spacify|truncate:30:". . ."}
OUTPUT:

Smokers are Productive, but Death Cuts Efficiency.

SMOKERS ARE PRODUCTIVE, BUT DEATH CUTS EFF
smokers are productive, but death cuts..

smokers are productive, but...

smokers are p

29

Chapter 6. Combining Modifiers

30

Chapter 7. Built-in Functions

Smarty comes with several built-in functions. Built-in functions are integral to the
template language. You cannot create custom functions with the same names, nor
can you modify built-in functions.

capture
capture is used to collect the output of the template into a variable instead of dis-
playing it. Any content between {capture name="foo"} and {/capture} is collected
into the variable specified in the name attribute. The captured content can be used
in the template from the special variable $smarty.capture.foo where foo is the value
passed in the name attribute. If you do not supply a name attribute, then "default”
will be used. All {capture} commands must be paired with {/capture}. You can nest
capture commands.
Technical Note: Smarty 1.4.0 - 1.4.4 placed the captured content into the variable named
$return. As of 1.4.5, this behavior was changed to use the name attribute, so update your
templates accordingly.
Caution
Be careful when capturing insert output. If you have caching turned on
and you have insert commands that you expect to run within cached
content, do not capture this content.
Example 7-1. capturing template content
{* we don't want to print a table row unless content is displayed *}
{capture name=banner}
{include file="get_banner.tpl"}
{lcapture}
{if $smarty.capture.banner ne "}
<tr >
<td >
{$smarty.capture.banner}
<hd >
<tr >
{/if}
config_load
Attribute Name Type Required Default Description
file string Yes n/a The name of the
config file to
include
section string No n/a The name of the
section to load

31

Chapter 7. Built-in Functions

Attribute Name Type Required Default Description
scope string no local How the scope
of the loaded
variables are
treated, which

must be one of
local, parent or
global. local
means variables
are loaded into
the local
template
context. parent
means variables
are loaded into
both the local
context and the
parent template
that called it.
global means
variables are
available to all
templates.

global boolean No No Whether or not
variables are
visible to the
parent
template, same
as
scope=parent.
INOTE: This
attribute is
deprecated by
the scope
attribute, but
still supported.
If scope is
supplied, this
value is
ignored.

This function is used for loading in variables from a configuration file into the tem-
plate. See Config Files for more info.

Example 7-2. function config load

{config_load file="colors.conf"}

<html >

<title >{#pageTitle#} <ltitle >

<body bgcolor="{#bodyBgColor#}" >

<table border="{#tableBorderSize#}" bgcolor="{#tableBgColor#}" >
<tr bgcolor="{#rowBgColor#}" >

<td >First </td >
<td >Last </td >
<td >Address </td >
<[tr >

</table >

</body >

32

Chapter 7. Built-in Functions

</html >

Contfig files may also contain sections. You can load variables from within a section
with the added attribute section.

NOTE: Config file sections and the built-in template function called section have noth-
ing to do with each other, they just happen to share a common naming convention.

Example 7-3. function config_load with section

{config_load file="colors.conf" section="Customer"}

<html >

<title >{#pageTitle#} <[title >

<body bgcolor="{#bodyBgColor#}" >

<table border="{#tableBorderSize#}" bgcolor="{#tableBgColor#}" >
<tr bgcolor="{#rowBgColor#}" >

<td >First </td >
<td >Last </td >
<td >Address </td >
<ftr >

</table >

</body >

</html >

foreach,foreachelse

Attribute Name Type Required Default Description
from string Yes n/a The name of the
array you are
looping
through
item string Yes n/a The name of the

variable that is
the current
element

key string No n/a The name of the
variable that is
the current key

name string No n/a The name of the
foreach loop for
accessing
foreach
roperties

foreach loops are an alternative to section loops. foreach is used to loop over a single
associative array. The syntax for foreach is much easier than section, but as a tradeoff
it can only be used for a single array. foreach tags must be paired with /foreach tags.
Required parameters are from and item. The name of the foreach loop can be any-
thing you like, made up of letters, numbers and underscores. foreach loops can be
nested, and the nested foreach names must be unique from each other. The from vari-
able (usually an array of values) determines the number of times foreach will loop.
foreachelse is executed when there are no values in the from variable.

33

Chapter 7. Built-in Functions

Example 7-4. foreach

{* this example will print out all the values of the $custid array *}
{foreach from=$custid item=curr_id}

id: {Scurr_id}

{/foreach}

OUTPUT:

id: 1000

id: 1001

id: 1002

Example 7-5. foreach key

{* The key contains the key for each looped value

assignment looks like this:

$smarty->assign(“"contacts”, array(array("phone" = > "1", “fax" = > "2", “cell" = > "3"),
array("phone" = > "555-4444", “fax" = > "555-3333", "cell" = > "760-
1234")));
“}
{foreach name=outer item=contact from=%contacts}
{foreach key=key item=item from=$contact}
{$key}: {Sitem}

{/foreach}
{lforeach}
OUTPUT:
phone: 1

fax: 2

cell: 3

phone: 555-4444

fax: 555-3333

cell: 760-1234

include
Attribute Name Type Required Default Description
file string Yes n/a The name of the
template file to
include
assign string No n/a The name of the

variable that
the output of
include will be
assigned to

[var...] [var type] No n/a \variable to pass
local to
template

Include tags are used for including other templates in the current template. Any vari-
ables available in the current template are also available within the included tem-
plate. The include tag must have the attribute "file", which contains the template

34

Chapter 7. Built-in Functions

resource path.

You can optionally pass the assign attribute, which will specify a template variable
name that the output of include will be assigned to instead of displayed.

Example 7-6. function include
{include file="header.tpl"}

{* body of template goes here *}
{include file="footer.tpl"}

You can also pass variables to included templates as attributes. Any variables explic-
itly passed to an included template as attributes are only available within the scope
of the included file. Attribute variables override current template variables, in the
case they are named alike.

Example 7-7. function include passing variables

{include file="header.tpl" title="Main Menu" table_bgcolor="#c0c0c0"}
{* body of template goes here *}

{include file="footer.tpl" logo="http://my.domain.com/logo.gif"}

Use the syntax for template resources to include files outside of the $template_dir
directory.

Example 7-8. function include template resource examples

{* absolute filepath *}
{include file="/usr/locall/include/templates/header.tpl"}

{* absolute filepath (same thing) *}
{include file="file:/usr/locall/include/templates/header.tpl"}

{* windows absolute filepath (MUST use "file:" prefix) *}
{include file="file:C:/www/pub/templates/header.tpl"}

{* include from template resource named "db" *}
{include file="db:header.tpl"}

include_php

Attribute Name Type Required Default Description

file string Yes n/a The name of the
php file to
include

once boolean No true whether or not
to include the
php file more
than once if
included
multiple times

35

Chapter 7. Built-in Functions

insert

36

Attribute Name Type Required Default Description

assign string No n/a The name of the
variable that
the output of
include_php
will be assigned
to

include_php tags are used to include a php script in your template. If security is en-
abled, then the php script must be located in the $trusted_dir path. The include_php
tag must have the attribute "file", which contains the path to the included php file,
either relative to $trusted_dir, or an absolute path.

include_php is a nice way to handle componentized templates, and keep PHP code
separate from the template files. Lets say you have a template that shows your site
navigation, which is pulled dynamically from a database. You can keep your PHP
logic that grabs database content in a separate directory, and include it at the top of
the template. Now you can include this template anywhere without worrying if the
database information was assigned by the application before hand.

By default, php files are only included once even if called multiple times in the tem-
plate. You can specify that it should be included every time with the once attribute.
Setting once to false will include the php script each time it is included in the tem-
plate.

You can optionally pass the assign attribute, which will specify a template variable
name that the output of include_php will be assigned to instead of displayed.

The smarty object is available as $this within the PHP script that you include.

Example 7-9. function include_php

load_nav.php

<?php

/I load in variables from a mysqgl db and assign them to the template
require_once("MySQL.class.php");

$sql = new MySQL;

$sql->query("select * from site_nav_sections order by name",SQL_ALL);
$this->assign('sections’,$sql->record);

2>

index.tpl

{* absolute path, or relative to S$trusted_dir *}
{include_php file="/path/to/load_nav.php"}

{foreach item="curr_section" from=$sections}
{$curr_section.name} <la >

{/foreach}

Chapter 7. Built-in Functions

Attribute Name Type Required Default Description

name string Yes n/a The name of the
insert function
(insert_name)

assign string No n/a The name of the
template
variable the
output will be
assigned to

script string No n/a The name of the
php script that
is included
before the insert
function is
called

[var ...] [var type] No n/a variable to pass
to insert
function

Insert tags work much like include tags, except that insert tags are not cached when
you have template caching enabled. They will be executed on every invocation of the
template.

Let’s say you have a template with a banner slot at the top of the page. The banner
can contain any mixture of HTML, images, flash, etc. so we can’t just use a static
link here, and we don’t want this contents cached with the page. In comes the insert
tag: the template knows #banner_location_id# and #site_id# values (gathered from a
config file), and needs to call a function to get the banner contents.

Example 7-10. function insert

{* example of fetching a banner *}
{insert name="getBanner" lid=#banner_location_id# sid=#site_id#}

In this example, we are using the name "getBanner" and passing the
parameters #banner_location_id# and #site_id#. Smarty will look for a function
named insert_getBanner() in your PHP application, passing the values of
#banner_location_id# and #site_id# as the first argument in an associative array. All
insert function names in your application must be prepended with "insert_" to
remedy possible function name-space conflicts. Your insert_getBanner() function
should do something with the passed values and return the results. These results are
then displayed in the template in place of the insert tag. In this example, Smarty
would call this function: insert_getBanner(array("lid" => "12345","sid" => "67890"));
and display the returned results in place of the insert tag.

If you supply the "assign" attribute, the output of the insert tag will be assigned to
this template variable instead of being output to the template. NOTE: assigning the
output to a template variable isn’t too useful with caching enabled.

If you supply the "script” attribute, this php script will be included (only once) before
the insert function is executed. This is the case where the insert function may not exist
yet, and a php script must be included first to make it work. The path can be either
absolute, or relative to $trusted_dir. When security is enabled, the script must reside
in $trusted_dir.

The Smarty object is passed as the second argument. This way you can reference and
modify information in the Smarty object from within the insert function.

37

Chapter 7. Built-in Functions

Technical Note: It is possible to have portions of the template not cached. If you have
caching turned on, insert tags will not be cached. They will run dynamically every time
the page is created, even within cached pages. This works good for things like banners,
polls, live weather, search results, user feedback areas, etc.

if, elseif,else

38

if statements in Smarty have much the same flexibility as php if statements, with a
few added features for the template engine. Every if must be paired with an /if. else
and elseif are also permitted. "eq", "ne",'neq", "gt", "It", "lte", "le", "gte" "ge","is even","is
odd", VVis not eVen"/"iS not odd",anoth/||modH/HdiV by”,”even by",”odd by",H::H/H!:H/VI>H/

<","<=",">=" are all valid conditional qualifiers, and must be separated from sur-
rounding elements by spaces.

Example 7-11. if statements

{if $name eq "Fred"}
Welcome Sir.

{elseif $name eq "Wilma"}
Welcome Ma’am.

{else}

Welcome, whatever you are.

{if

{* an example with "or" logic *}
{if $name eq "Fred" or $name eq "Wilma"}

{iify

{* same as above *}

{if $name == "Fred" || $name == "Wilma"}
(i}

{* the following syntax will NOT work, conditional qualifiers
must be separated from surrounding elements by spaces *}
{if $name=="Fred" || $name=="Wilma"}

{ify

{* parenthesis are allowed *}
{if ($amount < 0 or $amount > 1000) and $volume >= #minVolAmt#}

{ify

{* you can also embed php function calls *}
{if count($var) gt 0}

{ify

{* test if values are even or odd *}
{if $var is even}

{ify
{if $var is odd}

{ify
{if $var is not odd}

{ify

Chapter 7. Built-in Functions

{* test if var is divisible by 4 *}
{if $var is div by 4}

{ify
{* test if var is even, grouped by two. i.e.,

O=even, l=even, 2=o0dd, 3=odd, 4=even, 5=even, etc. *}
{if $var is even by 2}

{ify

{* O=even, l=even, 2=even, 3=odd, 4=odd, 5=odd, etc. *}
{if $var is even by 3}

{ify

I[delim,rdelim

literal

ldelim and rdelim are used for displaying the literal delimiter, in our case "{" or "}".
The template engine always tries to interpret delimiters, so this is the way around
that.

Example 7-12. 1delim, rdelim
{* this will print literal delimiters out of the template *}

{ldelim}funcname{rdelim} is how functions look in Smarty!

OUTPUT:

{funcname} is how functions look in Smarty!

Literal tags allow a block of data to be taken literally, not being interpreted by the
Smarty engine. This is handy for things like javascript sections, where there maybe
curly braces and such things that would confuse the template parser. Anything
within {literal}{/literal} tags is not interpreted, but displayed as-is.

Example 7-13. literal tags

{literal}
<script language=javascript >
<I--
function isblank(field) {
if (field.value == ")
{ return false; }
else
document.loginform.submit();
return true;
}
- >
<lIscript >
{/literal}

39

Chapter 7. Built-in Functions

php
php tags allow php to be embedded directly into the template. They will not be es-

caped, regardless of the $php_handling setting. This is for advanced users only, not
normally needed.

Example 7-14. php tags

{php}
/I including a php script directly
/I from the template.
include("/path/to/display_weather.php");

{/php}

section,sectionelse

Attribute Name Type Required Default Description
name string Yes n/a The name of the
section
loop [$vari- Yes n/a The name of the
able_name] \variable to

determine # of
loop iterations

start integer No 0 The index
position that
the section will
begin looping.
If the value is
negative, the
start position is
calculated from
the end of the
array. For
example, if
there are seven
values in the
loop array and
start is -2, the
start index is 5.
Invalid values
(values outside
of the length of
the loop array)
are
automatically
truncated to the
closest valid
value.

40

Chapter 7. Built-in Functions

IAttribute Name

Type

Required

Default

Description

step

integer

No

The step value

that will be
used to traverse
the loop array.
For example,
step=2 will loop
on index 0,2,4,
etc. If step is
negative, it will
step through
the array
backwards.

Sets the
maximum
number of
times the
section will
loop.

max integer No 1

determines
whether or not
to show this
section

show boolean No true

Template sections are used for looping over arrays of data. All section tags must be
paired with /section tags. Required parameters are name and loop. The name of the
section can be anything you like, made up of letters, numbers and underscores. Sec-
tions can be nested, and the nested section names must be unique from each other.
The loop variable (usually an array of values) determines the number of times the
section will loop. When printing a variable within a section, the section name must
be given next to variable name within brackets []. sectionelse is executed when there
are no values in the loop variable.

Example 7-15. section

{* this example will print out all the values of the $custid array *}
{section name=customer loop=$custid}

id: {$custid[customer]}

{/section}

OUTPUT:

id: 1000

id: 1001

id: 1002

Example 7-16. section loop variable

{* the loop variable only determines the number of times to loop.
you can access any variable from the template within the section.
This example assumes that $custid, $name and $address are all
arrays containing the same number of values *}

{section name=customer loop=$custid}

id: {$custid[customer]}

name: {$name[customer]}

address: {$address[customer]}

<p>

{/section}

41

Chapter 7. Built-in Functions

42

OUTPUT:

id: 1000

name: John Smith

address: 253 N 45th

<p>

id: 1001

name: Jack Jones

address: 417 Mulberry In

<p>

id: 1002

name: Jane Munson

address: 5605 apple st

<p>

Example 7-17. section names
{* the name of the section can be anything you like,

and it is used to reference the data within the section *}
{section name=mydata loop=$custid}

id: {$custid[mydata]}

name: {$name[mydata]}

address: {$address[mydata]}

<p>

{/section}

Example 7-18. nested sections

{* sections can be nested as deep as you like. With nested sections,
you can access complex data structures, such as multi-dimensional
arrays. In this example, $contact_type[customer] is an array of
contact types for the current customer. *}

{section name=customer loop=$custid}

id: {$custid[customer]}

name: {$name[customer]}

address: {$address[customer]}

{section name=contact loop=$contact_type[customer]}
{$contact_type[customer][contact]}: {$contact_info[customer][contact]}
{/section}

<p>

{/section}

OUTPUT:

id: 1000

name: John Smith

address: 253 N 45th

home phone: 555-555-5555

cell phone: 555-555-5555

e-mail: john@mydomain.com

<p>

id: 1001

name: Jack Jones

address: 417 Mulberry In

home phone: 555-555-5555

cell phone: 555-555-5555

e-mail: jack@mydomain.com

<p>

id: 1002

name: Jane Munson

address: 5605 apple st

Chapter 7. Built-in Functions

home phone: 555-555-5555

cell phone: 555-555-5555

e-mail: jane@mydomain.com

<p>

Example 7-19. sections and associative arrays
{* This is an example of printing an associative array

of data within a section *}
{section name=customer loop=$contacts}

name: {$contacts[customer].name}

home: {$contacts[customer].home}

cell: {$contacts[customer].cell}

e-mail: {$contacts[customer].email} <p>
{/section}

OUTPUT:

name: John Smith

home: 555-555-5555

cell: 555-555-5555

e-mail: john@mydomain.com <p>
name: Jack Jones

home phone: 555-555-5555

cell phone: 555-555-5555

e-mail: jack@mydomain.com <p>
name: Jane Munson

home phone: 555-555-5555

cell phone: 555-555-5555

e-mail: jane@mydomain.com <p>

Example 7-20. sectionelse

{* sectionelse will execute if there are no $custid values *}
{section name=customer loop=$custid}

id: {$custid[customer]}

{sectionelse}

there are no values in $custid.

{/section}

Sections also have their own variables that handle section properties. These are indi-
cated like so: {$smarty.section.sectionname.varname}

NOTE: As of Smarty 1.5.0, the syntax for section property variables has been changed
from {%sectionname.varname%]} to {$smarty.section.sectionname.varname}. The old
syntax is still supported, but you will only see reference to the new syntax in the
manual examples.

index

index is used to display the current loop index, starting with zero (or the start at-
tribute if given), and incrementing by one (or by the step attribute if given.)

Technical Note: If the step and start section properties are not modified, then this works
the same as the iteration section property, except it starts on 0 instead of 1.

43

Chapter 7. Built-in Functions

44

Example 7-21. section property index

{section name=customer loop=$custid}
{$smarty.section.customer.index} id: {$custid[customer]}

{/section}

OUTPUT:

0 id: 1000

1 id: 1001

2 id: 1002

index_prev

index_prev is used to display the previous loop index. on the first loop, this is set to
-1.

Example 7-22. section property index_prev

{section name=customer loop=$custid}
{$smarty.section.customer.index} id: {$custid[customer]}

{* FYI, $custid[customer.index] and $custid[customer] are identical in mean-
ing *}
{if $custid[customer.index_prev] ne $custid[customer.index]}

The customer id changed

{/if}

{/section}

OUTPUT:

0 id: 1000

The customer id changed

1 id: 1001

The customer id changed

2 id: 1002

The customer id changed

index_next

index_next is used to display the next loop index. On the last loop, this is still one
more than the current index (respecting the setting of the step attribute, if given.)

Example 7-23. section property index_next

{section name=customer loop=$custid}
{$smarty.section.customer.index} id: {$custid[customer]}

{* FYI, $custid[customer.index] and $custid[customer] are identical in mean-
ing *}
{if $custid[customer.index_next] ne $custid[customer.index]}

The customer id will change

{/if}

{/section}
OUTPUT:
0 id: 1000

The customer id will change

1 id: 1001

Chapter 7. Built-in Functions

The customer id will change

2 id: 1002

The customer id will change

iteration

iteration is used to display the current loop iteration.

NOTE: This is not affected by the section properties start, step and max, unlike the
index property. Iteration also starts with 1 instead of 0 like index. rownum is an alias
to iteration, they work identical.

Example 7-24. section property iteration

{section name=customer loop=$custid start=5 step=2}
current loop iteration: {$smarty.section.customer.iteration}

{$smarty.section.customer.index} id: {$custid[customer]}

{* FYI, $custid[customer.index] and $custid[customer] are identical in mean-
ing *}
{if $custid[customer.index_next] ne $custid[customer.index]}
The customer id will change

{/if}

{/section}

OUTPUT:

current loop iteration: 1
5 id: 1000

The customer id will change

current loop iteration: 2
7 id: 1001

The customer id will change

current loop iteration: 3
9 id: 1002

The customer id will change

first

first is set to true if the current section iteration is the first one.

Example 7-25. section property first
{section name=customer loop=$custid}

{if $smarty.section.customer first}
<table >
{1if}

<tr ><td >{$smarty.section.customer.index} id:
{$custid[customer]} <d ><fr >

{if $smarty.section.customer.last}
<[ltable >
{/if}

{/section}

OUTPUT:

<table >
<tr ><td >0 id: 1000 </td ></tr >

45

Chapter 7. Built-in Functions

<tr ><td >1 id: 1001 </td ></tr >
<tr ><td >2 id: 1002 <ftd ></tr >
</table >

last

last is set to true if the current section iteration is the last one.

Example 7-26. section property last

{section name=customer loop=$custid}

{if $smarty.section.customer.first}
<table >

{/if}

<tr ><td >{$smarty.section.customer.index} id:
{$custid[customer]} <hd ><ftr >

{if $smarty.section.customer.last}
</table >
{/if}

{/section}

OUTPUT:

<table >
<tr ><td >0 id: 1000 </td ></tr >
<tr ><td >1 id: 1001 </itd ></tr >
<tr ><td >2 id: 1002 </ftd ></tr >
<[table >

rownum

rownum is used to display the current loop iteration, starting with one. It is an alias

to iteration, they work identically.

Example 7-27. section property rownum

{section name=customer loop=$custid}
{$smarty.section.customer.rownum} id: {$custid[customer]}
{/section}

OUTPUT:

1 id: 1000

2 id: 1001

3 id: 1002

loop

loop is used to display the last index number that this section looped. This can be

used inside or after the section.

46

Chapter 7. Built-in Functions

Example 7-28. section property index

{section name=customer loop=$custid}
{$smarty.section.customer.index} id: {$custid[customer]}

{/section}

There were {$smarty.section.customer.loop} customers shown above.
OUTPUT:

0 id: 1000

1 id: 1001

2 id: 1002

There were 3 customers shown above.

show

show is used as a parameter to section. show is a boolean value, true or false. If false,
the section will not be displayed. If there is a sectionelse present, that will be alter-
nately displayed.

Example 7-29. section attribute show

{* $show_customer_info may have been passed from the PHP

application, to regulate whether or not this section shows *}

{section name=customer loop=$custid show=$show_customer_info}
{$smarty.section.customer.rownum} id: {$custid[customer]}

{/section}

{if $smarty.section.customer.show}
the section was shown.

{else}

the section was not shown.

{/if}

OUTPUT:

1 id: 1000

2 id: 1001

3 id: 1002

the section was shown.

total

total is used to display the number of iterations that this section will loop. This can
be used inside or after the section.

Example 7-30. section property total

{section name=customer loop=$custid step=2}
{$smarty.section.customer.index} id: {$custid[customer]}

{/section}

There were {$smarty.section.customer.total} customers shown above.

OUTPUT:

0 id: 1000

47

Chapter 7. Built-in Functions

strip

48

2 id: 1001

4 id: 1002

There were 3 customers shown above.

Many times web designers run into the issue where white space and carriage returns
affect the output of the rendered HTML (browser "features”), so you must run all
your tags together in the template to get the desired results. This usually ends up in
unreadable or unmanageable templates.

Anything within {strip}{/strip} tags in Smarty are stripped of the extra spaces or
carriage returns at the beginnings and ends of the lines before they are displayed.
This way you can keep your templates readable, and not worry about extra white
space causing problems.

Technical Note: {stripH/strip} does not affect the contents of template variables. See the
strip modifier function.

Example 7-31. strip tags

{* the following will be all run into one line upon output *}
{strip}
<table border=0 >
<tr >
<td >

This is a test </ffont >

<itd >
<htr >
<[table >
{/Istrip}

OUTPUT:

<table border=0 ><tr ><td ><font color="red"

Notice that in the above example, all the lines begin and end with HTML tags. Be
aware that all the lines are run together. If you have plain text at the beginning or
end of any line, they will be run together, and may not be desired results.

>This is a tes

Chapter 8. Custom Functions

assign

counter

Smarty comes with several custom functions that you can use in the templates.

Attribute Name Type Required Default Description
var string Yes n/a The name of the
variable being
assigned
value string Yes n/a The value being
assigned

assign is used for assigning template variables during the execution of the template.

Example 8-1. assign

{assign var="name" value="Bob"}
The value of $name is {$name}.
OUTPUT:

The value of $name is Bob.

Attribute Name Type Required Default Description
name string No default The name of the
counter
start number No 1 The initial

mumber to start
counting from

skip number No 1 The interval to
count by

direction string No up the direction to
count
(up/down)

print boolean No true Whether or not
to print the
value

assign string No n/a the template
variable the
output will be
assigned to

counter is used to print out a count. counter will remember the count on each itera-
tion. You can adjust the number, the interval and the direction of the count, as well
as determine whether or not to print the value. You can run multiple counters con-
currently by supplying a unique name for each one. If you do not supply a name, the

49

Chapter 8. Custom Functions

cycle

50

name 'default’ will be used.

If you supply the special "assign" attribute, the output of the counter function will be
assigned to this template variable instead of being output to the template.

Example 8-2. counter

{* initialize the count *}

{counter start=0 skip=2 print=false}

{counter}

{counter}

{counter}

{counter}

OUTPUT:

2

4

6

8

)Attribute Name

Type

Required

Default

Description

name

string

No

default

The name of the
cycle

values

mixed

Yes

N/A

The values to
cycle through,
either a comma
delimited list
(see delimiter
attribute), or an
array of values.

print

boolean

No

true

Whether to
print the value
or not

advance

boolean

true

Whether or not
to advance to
the next value

delimiter

string

The delimiter to
use in the
values
attribute.

assign

string

No

n/a

the template
variable the
output will be
assigned to

Cycle is used to cycle though a set of values. This makes it easy to alternate between

two or more colors in a table, or cycle through an array of values.

You can cycle through more than one set of values in your template by supplying a

name attribute. Give each set of values a unique name.

You can force the current value not to print with the print attribute set to false. This

debug

eval

Chapter 8. Custom Functions

would be useful for silently skipping a value.

The advance attribute is used to repeat a value. When set to true, the next call to cycle
will print the same value.

If you supply the special "assign" attribute, the output of the cycle function will be
assigned to this template variable instead of being output to the template.

Example 8-3. cycle

{section name=rows loop=%$data}

<tr bgcolor="{cycle values="#eeeeee,#d0d0d0"}" >
<td >{$data[rows]} <htd >

<tr >

{/section}

OUTPUT:

<tr bgcolor="#eeeeee" >
<td >1</td >

<tr >

<tr bgcolor="#d0d0d0" >
<td >2</td >

<fr >
<tr bgcolor="#eeeeee" >
<td >3</td >
<ftr >
Attribute Name Type Required Default Description
output string No html output type,
lhtml or
javascript

{debug} dumps the debug console to the page. This works regardless of the debug
settings in Smarty. Since this gets executed at runtime, this is only able to show the
assigned variables, not the templates that are in use. But, you see all the currently
available variables within the scope of this template.

Attribute Name Type Required Default Description

var mixed Yes n/a variable (or
string) to
evaluate

assign string No n/a the template
variable the
output will be
assigned to

eval is used to evaluate a variable as a template. This can be used for things like
embedding template tags/variables into variables or tags/variables into config file
variables.

51

Chapter 8. Custom Functions

fetch

52

If you supply the special "assign" attribute, the output of the eval function will be
assigned to this template variable instead of being output to the template.

Technical Note: Evaluated variables are treated the same as templates. They follow the
same escapement and security features just as if they were templates.

Technical Note: Evaluated variables are compiled on every invocation, the compiled ver-
sions are not saved! However if you have caching enabled, the output will be cached with
the rest of the template.

Example 8-4. eval

setup.conf

emphstart =

emphend =

titte = Welcome to {$company}'s home page!

ErrorCity = You must supply a {#emphstart#}city{#emphend#}.
ErrorState = You must supply a {#emphstart#}state{#emphend#}.

index.tpl

{config_load file="setup.conf"}

{eval var=$foo}

{eval var=#title#}

{eval var=#ErrorCity#}

{eval var=#ErrorState# assign="state_error"}
{$state_error}

OUTPUT:

This is the contents of foo.

Welcome to Foobar Pub & Grill's home page!
You must supply a city .

You must supply a state .

Attribute Name Type Required Default Description

file string Yes n/a the file, http or
ftp site to fetch

assign string No n/a the template
variable the
output will be
assigned to

fetch is used to fetch files from the local file system, http, or ftp and display the con-
tents. If the file name begins with "http://", the web site page will be fetched and
displayed. If the file name begins with "ftp://", the file will be fetched from the ftp
server and displayed. For local files, the full system file path must be given, or a path

Chapter 8. Custom Functions

relative to the executed php script.

If you supply the special "assign" attribute, the output of the fetch function will be
assigned to this template variable instead of being output to the template. (new in
Smarty 1.5.0)

Technical Note: This will not support http redirects, be sure to include a trailing slash on
your web page fetches where necessary.

Technical Note: If template security is turned on and you are fetching a file from the
local file system, this will only allow files from within one of the defined secure directories.
($secure_dir)

Example 8-5. fetch

{* include some javascript in your template *}
{fetch file="/export/httpd/www.domain.com/docs/navbar.js"}

{* embed some weather text in your template from another web site *}
{fetch file="http://www.myweather.com/68502/"}

{* fetch a news headline file via ftp *}
{fetch file="ftp://user:password@ftp.domain.com/path/to/currentheadlines.txt"}

{* assign the fetched contents to a template variable *}
{fetch file="http://www.myweather.com/68502/" assign="weather"}
{if $weather ne "7}

{$weather}
{ify
html_checkboxes
Attribute Name Type Required Default Description
name string No checkbox name of
checkbox list
values array Yes, unless n/a an array of
using options values for
attribute checkbox
buttons
output array Yes, unless n/a an array of
using options output for
attribute checkbox
buttons
checked string No empty the checked
checkbox
element
options associative Yes, unless n/a an associative
array using values array of values
and output and output

53

Chapter 8. Custom Functions

Attribute Name Type Required Default Description

separator string No empty string of text to
separate each
checkbox item

html_checkboxes is a custom function that creates an html checkbox group with pro-
vided data. It takes care of which item(s) are selected by default as well. Required at-
tributes are values and output, unless you use options instead. All output is XHTML
compatible.

All parameters that are not in the list above are printed as name/value-pairs inside
each of the created <input>-tags.

Example 8-6. html_checkboxes
index.php:

require('Smarty.php.class’);

$smarty = new Smarty;

$smarty- >assign(‘cust_ids’, array(1000,1001,1002,1003));

$smarty- >assign(’cust_names’, array('Joe Schmoe’,’Jack Smith’,’'Jane
Johnson’,’CHarlie Brown’));

$smarty- >assign(‘customer_id’, 1001);

$smarty- >display(index.tpl’);

index.tpl:

{html_checkboxes values=$cust_ids checked=$customer_id output=$cust_names separator=" <l

index.php:

require('Smarty.php.class’);
$smarty = new Smarty;
$smarty- >assign(‘cust_checkboxes’, array(
1001 => 'Joe Schmoe’,
1002 => 'Jack Smith’,
1003 => 'Jane Johnson',/'Carlie Brown));
$smarty- >assign(’customer_id’, 1001);
$smarty- >display(index.tpl’);

index.tpl:

{html_checkboxes name="id" checkboxes=$cust_checkboxes checked=$customer_id separator="

OUTPUT: (both examples)

<input type="checkbox" name="id[]" value="1000" >Joe Schmoe<br / >

<input type="checkbox" name="id[]" value="1001" checked="checked" ><br / >

<input type="checkbox" name="id[]" value="1002" >Jane Johnson <br / >

<input type="checkbox" name="id[]" value="1003" >Charlie Brown <br / >
html_image

Attribute Name Type Required Default Description

54

Chapter 8. Custom Functions

Attribute Name Type Required Default Description
file string Yes n/a name/path to
image
border string No 0 size of border
around image
height string No actual image |height to
height display image
width string No actual image (width to
width display image
basedir string no web server doc directory to
root base relative
aths from
link string no n/a href value to
link the image
to

html_image is a custom function that generates an HTML tag for an image. The
height and width are automatically calculated from the image file if none are sup-

plied.

basedir is the base directory that relative image paths are based from. If not given, the
web server document root (env variable DOCUMENT_ROOT) is used as the base. If
security is enabled, the path to the image must be within a secure directory.

link is the href value to link the image to. If link is supplied, an <a> tag is put around the image tag.

Technical Note: html_image requires a hit to the disk to read the image and calculate
the height and width. If you don’t use template caching, it is generally better to avoid
html_image and leave image tags static for optimal performance.

Example 8-7. html_image

index.php:

require(’'Smarty.php.class’);
$smarty = new Smarty;

$smarty- >display(index.tpl’);

index.tpl:

{image file="pumpkin.jpg"}
{image file="/path/from/docroot/pumpkin.jpg"}

{image file="../path/relative/to/currdir/pumpkin.jpg"}

OUTPUT: (possible)

<img src="pumpkin.jpg" border="0" width="44" height="68"
<img src="/path/under/docroot/pumpkin.jpg” border="0" width="44" height="68"
<img src="../path/relative/to/currdir/pumpkin.jpg" border="0" width="44" height="68"

html_options

>

55

Chapter 8. Custom Functions

56

Attribute Name Type Required Default Description
values array Yes, unless n/a an array of
using options values for
attribute dropdown
output array Yes, unless n/a an array of
using options output for
attribute dropdown
selected string/array No empty the selected
option
element(s)
options associative Yes, unless n/a an associative
array using values array of values
and output and output
name string No empty name of select
group

html_options is a custom function that creates html option group with provided data.
It takes care of which item(s) are selected by default as well. Required attributes are
values and output, unless you use options instead.

If a given value is an array, it will treat it as an html OPTGROUP, and display the
groups. Recursion is supported with OPTGROUP. All output is XHTML compatible.

If the optional name attribute is given, the <select name="groupname"></select>
tags will enclose the option list. Otherwise only the option list is generated.

All parameters that are not in the list above are printed as name/value-pairs inside
the <select>-tag. They are ignored if the optional name is not given.

Example 8-8. html_options
index.php:

require('Smarty.php.class’);

$smarty = new Smarty;

$smarty- >assign(‘cust_ids’, array(1000,1001,1002,1003));

$smarty- >assign(’cust_names’, array('Joe Schmoe’,'Jack Smith’,'Jane
Johnson’,'Carlie Brown));

$smarty- >assign('customer_id’, 1001);

$smarty- >display(index.tpl’);

index.tpl:

<select name=customer_id >
{html_options values=$cust_ids selected=$customer_id output=$cust_names}
<[select >

index.php:

require('Smarty.php.class’);
$smarty = new Smarty;
$smarty- >assign(‘cust_options’, array(
1001 => 'Joe Schmoe’,
1002 => 'Jack Smith’,
1003 => 'Jane Johnson’,
1004 => ’'Charlie Brown));
$smarty- >assign(’customer_id’, 1001);
$smarty- >display(index.tpl’);

index.tpl:

Chapter 8. Custom Functions

<select name=customer_id >
{html_options options=%cust_options selected=$customer_id}
<Iselect >

OUTPUT: (both examples)

<select name=customer_id >

<option value="1000" >Joe Schmoe </option >
<option value="1001" selected="selected" >Jack Smith </option >
<option value="1002" >Jane Johnson </option >
<option value="1003" >Charlie Brown </option >
<Iselect >
html_radios
Attribute Name Type Required Default Description
name string No radio mame of radio
list
values array Yes, unless n/a an array of
using options values for radio
attribute buttons
output array Yes, unless n/a an array of
using options output for radio
attribute buttons
checked string No empty the checked
radio element
options associative Yes, unless n/a an associative
array using values array of values
and output and output
separator string No empty string of text to
separate each
radio item

html_radios is a custom function that creates html radio button group with provided
data. It takes care of which item is selected by default as well. Required attributes are
values and output, unless you use options instead. All output is XHTML compatible.

All parameters that are not in the list above are printed as name/value-pairs inside
each of the created <input>-tags.

Example 8-9. html_radios
index.php:

require('Smarty.php.class’);

$smarty = new Smarty;

$smarty- >assign(‘cust_ids’, array(1000,1001,1002,1003));

$smarty- >assign(’cust_names’, array('Joe Schmoe’,’Jack Smith’,'Jane
Johnson’,’Carlie Brown’));

$smarty- >assign(‘customer_id’, 1001);

$smarty- >display(index.tpl’);

index.tpl:
57

Chapter 8. Custom Functions

{html_radios values=%$cust_ids checked=$customer_id output=$cust_names separator="

index.php:

require('Smarty.php.class’);
$smarty = new Smarty;

$smarty-

1001 => 'Joe Schmoe’,
1002 => 'Jack Smith’,
1003 => 'Jane Johnson’,
1004 => ’'Charlie Brown));

$smarty-
$smarty-

index.tpl:

>assign(‘cust_radios’, array(

>assign('customer_id’, 1001);
>display(index.tpl’);

{html_radios name="id" radios=$cust_radios checked=$customer_id separator="

OUTPUT: (both examples)

<input type="radio"
<input type="radio"
<input type="radio"
<input type="radio"

html_select_date

name="id[]" value="1000"
name="id[]" value="1001" checked="checked"
name="id[]" value="1002"
name="id[]" value="1003"

>Joe Schmoe<br / >

><br / >

>Jane Johnson <br / >

>Charlie Brown

<br / >

)Attribute Name

Type

Required

Default

Description

prefix

string

Date_

what to prefix
the var name
with

time

timestamp/YYY
MM-DD

current time in
unix timestamp
or
YYYY-MM-DD
format

what date/time
to use

start_year

string

current year

the first year in
the dropdown,
either year
number, or
relative to
current year
(+/-N)

end_year

string

same as
start_year

the last year in
the dropdown,
either year
number, or
relative to
current year

(+/-N)

58

<br [/

<br /1 >"}

Chapter 8. Custom Functions

IAttribute Name

Type

Required

Default

Description

display_days

boolean

No

true

whether to
display days or
not

display_months

boolean

true

whether to
display months
or not

display_years

boolean

true

whether to
display years or
mnot

month_format

string

%B

what format the
month should
be in (strftime)

day_format

string

%02d

what format the
day output
should be in
(sprintf)

day_value_formg

at

string

Y%d

what format the
day value
should be in
(sprintf)

year_as_text

boolean

false

whether or not
to display the
year as text

reverse_years

boolean

false

display years in
reverse order

field_array

string

null

if a name is
given, the select
boxes will be
drawn such
that the results
will be returned
to PHP in the
form of
name[Day],
name[Year],
mame[Month].

day_size

string

null

adds size
attribute to
select tag if
given

month_size

string

null

adds size
attribute to
select tag if
given

year_size

string

null

adds size
attribute to
select tag if
given

59

Chapter 8. Custom Functions

60

IAttribute Name

Type

Required

Default

Description

all_extra

string

No

null

adds extra
attributes to all
select/input
tags if given

day_extra

string

null

adds extra

attributes to
select/input
tags if given

month_extra

string

null

adds extra

attributes to
select/input
tags if given

year_extra

string

null

adds extra

attributes to
select/input
tags if given

field_order

string

MDY

the order in
which to
display the
fields

field_separator

string

\n

string printed
between
different fields

month_value_format

string

%m

strftime format
of the month
values, default
is %m for
month
numbers.

html_select_date is a custom function that creates date dropdowns for you. It can
display any or all of year, month, and day.

Example 8-10. html_select_date

{html_select_date}

OUTPUT:

<select nhame="Date_Month" >
>January </option >
>February </option >
>March </option

<option value="1"
<option value="2"
<option value="3"
<option value="4"
<option value="5"
<option value="6"
<option value="7"
<option value="8"
<option value="9"
<option value="10"
<option value="11"

</select >

>April

</option

>May</option
>June </option
>July </option
>August </option >

>September </option >
>October </option >
>November </option >
<option value="12" selected

<select name="Date_Day" >

<option value="1"

>01 </option

>December </option

>

>
>

>

>
>

>

Chapter 8. Custom Functions

<option value="2" >02 </option >
<option value="3" >03</option >
<option value="4" >04 </option >
<option value="5" >05</option >
<option value="6" >06 </option >
<option value="7" >07 </option >
<option value="8" >08</option >
<option value="9" >09</option >
<option value="10" >10</option >
<option value="11" >11l</option >
<option value="12" >12</option >
<option value="13" selected >13</option >
<option value="14" >14 </option >
<option value="15" >15</option >
<option value="16" >16</option >
<option value="17" >17 </option >
<option value="18" >18</option >
<option value="19" >19</option >
<option value="20" >20</option >
<option value="21" >21</option >
<option value="22" >22</option >
<option value="23" >23</option >
<option value="24" >24 </option >
<option value="25" >25</option >
<option value="26" >26 </option >
<option value="27" >27 </option >
<option value="28" >28 </option >
<option value="29" >29</option >
<option value="30" >30</option >
<option value="31" >31l</option >
</select >

<select name="Date_Year" >
<option value="2001" selected >2001 </option >
<lselect >

Example 8-11. html_select_date

{* start and end year can be relative to current year *}
{html_select_date prefix="StartDate" time=$time start_year="-5" end_year="+1" display_days=false}

OUTPUT: (current year is 2000)

<select name="StartDateMonth" >
<option value="1" >January </option >
<option value="2" >February </option >
<option value="3" >March </option >
<option value="4" >April </option >
<option value="5" >May</option >
<option value="6" >June </option >
<option value="7" >July </option >
<option value="8" >August </option >
<option value="9" >September </option >
<option value="10" >October </option >
<option value="11" >November </option >
<option value="12" selected >December </option >
<lselect >

<select name="StartDateYear" >

<option value="1999" >1995 </option >
<option value="1999" >1996 </option >
<option value="1999" >1997 </option >
<option value="1999" >1998 </option >
<option value="1999" >1999 </option >
<option value="2000" selected >2000 </option >
<option value="2001" >2001 </option >

</select >
61

Chapter 8. Custom Functions

html_select_time

62

Attribute Name

Type

Required

Default

Description

prefix

string

No

Time_

what to prefix
the var name
with

time

timestamp

current time

what date/time
to use

display_hours

boolean

true

whether or not
to display
lhours

dis-
play_minutes

boolean

No

true

whether or not
to display
minutes

dis-
play_seconds

boolean

true

whether or not
to display
seconds

dis-
play_meridian

boolean

true

whether or not
to display
meridian

(am/pm)

use_24 hours

boolean

true

whether or not
to use 24 hour
clock

minute_interval

integer

number
interval in
minute
dropdown

second_interval

integer

number
interval in
second
dropdown

field_array

string

n/a

outputs values
to array of this
name

all_extra

string

null

adds extra

attributes to
select/input
tags if given

hour_extra

string

null

adds extra

attributes to
select/input
tags if given

minute_extra

string

null

adds extra

attributes to
select/input
tags if given

second_extra

string

null

adds extra
attributes to
select/input

tags if given

Chapter 8. Custom Functions

Attribute Name Type Required Default Description

meridian_extra string No null adds extra
attributes to
select/input

tags if given

html_select_time is a custom function that creates time dropdowns for you. It can
display any or all of hour, minute, second and meridian.

Example 8-12. html_select_time

{html_select_time use_24_hours=true}

OUTPUT:

<select name="Time_Hour" >
<option value="00" >00</option >
<option value="01" >01</option >
<option value="02" >02</option >
<option value="03" >03</option >
<option value="04" >04 </option >
<option value="05" >05</option >
<option value="06" >06 </option >
<option value="07" >07 </option >
<option value="08" >08 </option >
<option value="09" selected >09 </option
<option value="10" >10</option >
<option value="11" >11</option >
<option value="12" >12 </option >
<option value="13" >13</option >
<option value="14" >14</option >
<option value="15" >15</option >
<option value="16" >16</option >
<option value="17" >17</option >
<option value="18" >18</option >
<option value="19" >19</option >
<option value="20" >20</option >
<option value="21" >21</option >
<option value="22" >22 </option >
<option value="23" >23</option >
</select >

<select name="Time_Minute" >
<option value="00" >00</option >
<option value="01" >01</option >
<option value="02" >02 </option >
<option value="03" >03</option >
<option value="04" >04 </option >
<option value="05" >05</option >
<option value="06" >06 </option >
<option value="07" >07</option >
<option value="08" >08</option >
<option value="09" >09</option >
<option value="10" >10</option >
<option value="11" >11</option >
<option value="12" >12</option >
<option value="13" >13</option >
<option value="14" >14 </option >
<option value="15" >15</option >
<option value="16" >16</option >
<option value="17" >17</option >
<option value="18" >18</option >
<option value="19" >19</option >

>

63

Chapter 8. Custom Functions

64

<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
</Iselect
<select
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option

value="20" selected

value="21" >21</option >
value="22" >22 </option >
value="23" >23</option >
value="24" >24 </option >
value="25" >25</option >
value="26" >26</option >
value="27" >27</option >
value="28" >28</option >
value="29" >29</option >
value="30" >30</option >
value="31" >31</option >
value="32" >32</option >
value="33" >33 </option >
value="34" >34 </option >
value="35" >35</option >
value="36" >36 </option >
value="37" >37</option >
value="38" >38</option >
value="39" >39</option >
value="40" >40</option >
value="41" >41</option >
value="42" >42 </option >
value="43" >43 </option >
value="44" >44 </option >
value="45" >45 </option >
value="46" >46 </option >
value="47" >47 </option >
value="48" >48</option >
value="49" >49 </option >
value="50" >50</option >
value="51" >51</option >
value="52" >52 </option >
value="53" >b53 </option >
value="54" >b54 </option >
value="55" >55</option >
value="56" >56 </option >
value="57" >57 </option >
value="58" >58</option >
value="59" >59</option >

>

name="Time_Second" >
value="00" >00</option >
value="01" >01</option >
value="02" >02 </option >
value="03" >03</option >
value="04" >04 </option >
value="05" >05</option >
value="06" >06 </option >
value="07" >07</option >
value="08" >08</option >
value="09" >09</option >
value="10" >10</option >
value="11" >11</option >
value="12" >12 </option >
value="13" >13</option >
value="14" >14 </option >
value="15" >15</option >
value="16" >16</option >
value="17" >17</option >
value="18" >18</option >
value="19" >19</option >
value="20" >20</option >
value="21" >21</option >
value="22" >22</option >

value="23" selected

>20</option

>23 </option

>

>

<option value="24"
<option value="25"
<option value="26"
<option value="27"
<option value="28"
<option value="29"
<option value="30"
<option value="31"
<option value="32"
<option value="33"
<option value="34"
<option value="35"
<option value="36"
<option value="37"
<option value="38"
<option value="39"
<option value="40"
<option value="41"
<option value="42"
<option value="43"
<option value="44"
<option value="45"
<option value="46"
<option value="47"
<option value="48"
<option value="49"
<option value="50"
<option value="51"
<option value="52"
<option value="53"
<option value="54"
<option value="55"
<option value="56"
<option value="57"
<option value="58"
<option value="59"
<Iselect >

>24 </option
>25</option
>26 </option
>27 </option
>28 </option
>29 </option
>30</option
>31 </option
>32 </option
>33 </option
>34 </option
>35 </option
>36 </option
>37 </option
>38 </option
>39 </option
>40 </option
>41 </option
>42 </option
>43 </option
>44 </option
>45 </option
>46 </option
>47 </option
>48 </option
>49 </option
>50 </option
>51 </option
>52 </option
>53 </option
>54 </option
>55 </option
>56 </option
>57 </option
>58 </option
>59 </option

<select name="Time_Meridian"
<option value="am" selected

<option value="pm"

html_table

>

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYV

>AM</option

>PM</option >

>

Chapter 8. Custom Functions

</select >
Attribute Name Type Required Default Description
loop array Yes n/a array of data to
loop through
cols integer No 3 number of
columns in the
table
table_attr string No border="1" lattributes for
table tag
tr_attr string No empty attributes for tr
tag (arrays are
cycled)

65

Chapter 8. Custom Functions

math

66

Attribute Name Type Required Default Description

td_attr string No empty attributes for td
tag (arrays are
cycled)

trailpad string No value to pad the
trailing cells on
last row with (if

any)

html_table is a custom function that dumps an array of data into an HTML table. The
cols attribute determines how many columns will be in the table. The table_attr, tr_attr
and td_attr values determine the attributes given to the table, tr and td tags. If tr_attr
or td_attr are arrays, they will be cycled through. trailpad is the value put into the
trailing cells on the last table row if there are any present.

Example 8-13. html_table
index.php:

require('Smarty.php.class’);

$smarty = new Smarty;

$smarty- >assign(data’,array(1,2,3,4,5,6,7,8,9));

$smarty- >assign(tr',array(’bgcolor="#eeeeee" ’bgcolor="#dddddd"));
$smarty- >display(index.tpl’);

index.tpl:

{html_table loop=%$data}
{html_table loop=%$data cols=4 table_attrs="border="0"}
{html_table loop=%data cols=4 tr_attrs=$tr}

OUTPUT:

<tr ><td >1</td ><td >2</td ><td >3</td ></tr >

<tr ><td >4</td ><td >5</td ><td >6</td ></tr >

<tr ><td >7</td ><td >8</td ><td >9</td ></tr >

</table >

<table border="0" >

<tr ><td >1</td ><td >2</td ><td >3</td ><td >4</td ></tr >
<tr ><td >5</td ><td >6</td ><td >7</td ><td >8</td ></tr >

<tr ><td >9</td ><td > </td ><td > </td ><td > </td ></tr >
<ltable >
<table border="1" >
<tr bgcolor="#eeeeee" ><td >1</td ><td >2</td ><td >3</td ><td >4</td ></tr >
<tr bgcolor="#dddddd" ><td >5</td ><td >6</td ><td >7</td ><td >8</td ></tr >
<tr bgcolor="#eeeeee" ><td >9</td ><td > </ftd ><td > </td ><td > </td
</table >
Attribute Name Type Required Default Description

equation string Yes n/a the equation to

execute

></tr

Chapter 8. Custom Functions

Attribute Name Type Required Default Description

format string No n/a the format of
the result
(sprintf)

var numeric Yes n/a equation
variable value

assign string No n/a tem_p};teth
variable the
output will be
assigned to

[var ...] numeric Yes n/a equation
variable value

math allows the template designer to do math equations in the template. Any nu-
meric template variables may be used in the equations, and the result is printed in
place of the tag. The variables used in the equation are passed as parameters, which
can be template variables or static values. +, -, /, *, abs, ceil, cos, exp, floor, log, log10,
max, min, pi, pow, rand, round, sin, sqrt, srans and tan are all valid operators. Check
the PHP documentation for further information on these math functions.

If you supply the special "assign" attribute, the output of the math function will be
assigned to this template variable instead of being output to the template.

Technical Note: math is an expensive function in performance due to its use of the php
eval() function. Doing the math in PHP is much more efficient, so whenever possible do
the math calculations in PHP and assign the results to the template. Definately avoid
repetitive math function calls, like within section loops.

Example 8-14. math

{* $height=4, $width=5 *}

{math equation="x + y" x=$height y=$width}

OUTPUT:

9

{* $row_height = 10, $row_width = 20, #col_div# = 2, assigned in tem-

plate *}

{math equation="height * width / division"
height=$row_height
width=$row_width
division=#col_div#}

OUTPUT:

100

{* you can use parenthesis *}
{math equation="((x +y)/ z)" x=2 y=10 z=2}

OUTPUT:

67

Chapter 8. Custom Functions

{* you can supply a format parameter in sprintf format *}
{math equation="x + y" x=4.4444 y=5.0000 format="%.2f"}
OUTPUT:

9.44

mailto

Attribute Name Type Required Default Description

address string Yes n/a the e-mail
address

text string No n/a the text to
display, default
is the e-mail
address

encode string No none How to encode
the e-mail. Can
be one of none,
hex or
javascript.

cc string No n/a e-mail
addresses to
carbon copy.
Separate entries
by a comma.

bec string No n/a e-mail
addresses to
blind carbon
copy. Separate
entries by a
comma.

subject string No n/a e-mail subject.

newsgroups string No n/a newsgroups to
[post to.
Separate entries
by a comma.

followupto string No n/a addresses to
follow up to.
Separate entries
by a comma.

extra string No n/a any extra
information
you want
passed to the
link, such as
style sheet
classes

68

Chapter 8. Custom Functions

mailto automates the creation of mailto links and optionally encodes them. Encoding
e-mails makes it more difficult for web spiders to pick up e-mail addresses off of your
site.

Technical Note: javascript is probably the most thorough form of encoding, although you
can use hex encoding too.

Example 8-15. mailto

{mailto address="me@domain.com"}

{mailto address="me@domain.com" text="send me some mail"}

{mailto address="me@domain.com" encode="javascript"}

{mailto address="me@domain.com" encode="hex"}

{mailto address="me@domain.com" subject="Hello to you!"}

{mailto address="me@domain.com" cc="you@domain.com,they@domain.com"}
{mailto address="me@domain.com" extra='class="email"’}

OUTPUT:

me@domain.com

send me some mail

<SCRIPT language="javascript" >eval(unescape('%64%61%63%75%6d%65%6e%74%2e%77%72%6

9%74%65%28%27%3c%61%20%68%72%65%66%30%22%6d%61%69%6C%74%6{%3a%6d%65%40%64%6%6d
61%69%6e%2e%63%6%66d%22%20%3e%60%65%40%64%6{%60%61%69%6€%2e%63%6{%6d%3c%2{%61%3e
%27%29%3b")) </SCRIPT >

&H#X6d;&HX65;8#X40;8H#X64;&

#X6f;m ain.com <la >
me@domain.com
me@domain.com
me@domain.com
popup_init

popup is an integration of overLib, a library used for popup windows. These
are used for context sensitive information, such as help windows or tooltips.
popup_init must be called once at the top of any page you plan on using the popup
function. overLib was written by Erik Bosrup, and the homepage is located at
http:/ /www.bosrup.com/web/overlib/.

As of Smarty version 2.1.2, overLib does NOT come with the release. Download over-
Lib, place the overlib js file under your document root and supply the relative path
to this file as the "src" parameter to popup_init.

Example 8-16. popup_init

{* popup_init must be called once at the top of the page *}
{popup_init src="/javascripts/overlib.js"}

popup
Attribute Name Type Required Default Description
text string Yes n/a the text/html to
display in the
opup window

69

Chapter 8. Custom Functions

70

IAttribute Name

Type

Required

Default

Description

trigger

string

No

onMouseOuver

What is used to
trigger the
popup window.
Can be one of
onMouseOver
or onClick

sticky

boolean

false

Makes the
popup stick
around until
closed

caption

string

n/a

sets the caption
to title

fgcolor

string

n/a

color of the
inside of the
opup box

bgcolor

string

n/a

color of the
border of the
opup box

textcolor

string

n/a

sets the color of
the text inside
the box

capcolor

string

n/a

sets color of the
box’s caption

closecolor

string

n/a

sets the color of
the close text

textfont

string

n/a

sets the font to
be used by the
main text

captionfont

string

n/a

sets the font of
the caption

closefont

string

n/a

sets the font for
the "Close" text

textsize

string

n/a

sets the size of
the main text’s
font

captionsize

string

n/a

sets the size of
the caption’s
font

closesize

string

n/a

sets the size of
the "Close"
text’s font

width

integer

n/a

sets the width
of the box

height

integer

n/a

sets the height
of the box

left

boolean

false

makes the
[popups go to
the left of the
mouse

Chapter 8. Custom Functions

IAttribute Name

Type

Required

Default

Description

right

boolean

No

false

makes the
[popups go to
the right of the
mouse

center

boolean

false

makes the
[popups go to
the center of the
mouse

above

boolean

false

makes the
[popups go
above the
mouse. NOTE:
only possible
when height
lhas been set

below

boolean

No

false

makes the
popups go
below the

mouse

border

integer

n/a

makes the
border of the
[popups thicker
or thinner

offsetx

integer

No

n/a

how far away
from the
pointer the
popup will
show up,
horizontally

offsety

integer

n/a

how far away
from the
pointer the
popup will
show up,
vertically

fgbackground

url to image

n/a

defines a
picture to use
instead of color
for the inside of
the popup.

71

Chapter 8. Custom Functions

Attribute Name Type Required Default Description

bgbackground | url to image No n/a defines a
picture to use
instead of color
for the border
of the popup.
INOTE: You will
want to set
bgcolor to " or
the color will
show as well.
INOTE: When
having a Close
link, Netscape
will re-render
the table cells,
making things
look incorrect

closetext string No n/a sets the "Close"
text to
something else

noclose boolean No n/a does not
display the
"Close" text on
stickies with a

caption
status string No n/a sets the text in
the browsers
status bar
autostatus boolean No n/a sets the status

bar’s text to the
popup’s text.
NOTE:
overrides status
setting

autostatuscap string No n/a sets the status
bar’s text to the
caption’s text.
NOTE:
overrides status
and autostatus
settings

inarray integer No n/a tells overLib to
read text from
this index in the
ol_text array,
located in
overlib.js. This
[parameter can
be used instead
of text

72

Chapter 8. Custom Functions

IAttribute Name

Type

Required

Default

Description

caparray

integer

No

n/a

tells overLib to
read the caption
from this index
in the ol_caps
array

capicon

url

n/a

displays the

image given

before the
opup caption

snapXx

integer

No

n/a

snaps the
[popup to an
even position in
a horizontal
grid

snapy

integer

n/a

snaps the
[popup to an
even position in
a vertical grid

fixx

integer

n/a

locks the
popups
lhorizontal
[position Note:
overrides all
other horizontal
lacement

fixy

integer

n/a

locks the
popups vertical
[position Note:
overrides all
other vertical
lacement

background

url

n/a

sets image to be
used instead of
table box
background

padx

integer,integer

n/a

lpads the
background
image with
horizontal
whitespace for
text placement.
Note: this is a
two parameter
command

pady

integer,integer

n/a

pads the
background
image with
vertical
whitespace for
text placement.
Note: this is a
two parameter
command

73

Chapter 8. Custom Functions

74

IAttribute Name

Type

Required

Default

Description

fullhtml

boolean

No

n/a

allows you to
control the html
over a
background
picture
completely. The
html code is
expected in the
"text" attribute

frame

string

n/a

controls
[popups in a
different frame.
See the overlib
page for more
info on this
function

timeout

string

n/a

calls the
specified
javascript
function and
takes the return
value as the text
that should be
displayed in the
opup window

delay

integer

n/a

makes that
popup behave
like a tooltip. It
will popup only
after this delay
in milliseconds

hauto

boolean

n/a

automatically
determine if the
popup should
be to the left or
right of the
mouse.

vauto

boolean

n/a

automatically
determine if the
popup should
be above or
below the
mouse.

popup is used to create javascript popup windows.

Example 8-17. popup

{* popup_init must be called once at the top of the page *}
{popup_init src="/javascripts/overlib.js"}

{* create a link with a popup window when you move your mouse over *}
<A href="mypage.html" {popup text="This link takes you to my page!"}

{* you can use html, links, etc in your popup text *}

>mypage

Chapter 8. Custom Functions

<A href="mypage.html" {popup sticky=true caption="mypage contents"

text=" links pages images " snapx=10 snapy=10} >mypage

OUTPUT:

(See the Smarty official web site for working examples.)

textformat

IAttribute Name

Type

Required

Default

Description

style

string

n/a

reset style

indent

number

The number of
chars to indent
every line

indent_first

number

The number of
chars to indent
the first line

indent_char

string

(single space)

The character
(or string of
chars) to indent
with

wrap

number

80

How many
characters to
wrap each line
to

wrap_char

string

\n

The character
(or string of
chars) to break
each line with

wrap_cut

boolean

false

If true, wrap
will break the
line at the exact
character
instead of at a
word boundary

assign

string

n/a

the template
variable the
output will be
assigned to

textformat is a block function used to format text. It basically cleans up spaces and
special characters, and formats paragraphs by wrapping at a boundary and indenting

lines.

You can set the parameters explicitly, or use a preset style. Currently "email" is the

only available style.

Example 8-18. textformat

{textformat wrap=40}

This is foo.
This is foo.

75

Chapter 8. Custom Functions

This is foo.

This is foo.

This is foo.

This is foo.

This is bar.

bar foo bar foo foo.
bar foo bar foo foo.
bar foo bar foo foo.
bar foo bar foo foo.
bar foo bar foo foo.
bar foo bar foo foo.
bar foo bar foo foo.
{/textformat}

OUTPUT:

This is foo. This is foo. This is foo.
This is foo. This is foo. This is foo.

This is bar.

bar foo bar foo foo. bar foo bar foo
foo. bar foo bar foo foo. bar foo bar
foo foo. bar foo bar foo foo. bar foo
bar foo foo. bar foo bar foo foo.

{textformat wrap=40 indent=4}

This is foo.
This is foo.
This is foo.
This is foo.
This is foo.
This is foo.

This is bar.

bar foo bar foo foo.
bar foo bar foo foo.
bar foo bar foo foo.
bar foo bar foo foo.
bar foo bar foo foo.
bar foo bar foo foo.
bar foo bar foo foo.

{textformat}
OUTPUT:

This is foo. This is foo. This is
foo. This is foo. This is foo. This
is foo.

This is bar.

bar foo bar foo foo. bar foo bar foo
foo. bar foo bar foo foo. bar foo
bar foo foo. bar foo bar foo foo.
bar foo bar foo foo. bar foo bar
foo foo.

{textformat wrap=40 indent=4 indent_first=4}

76

This i
This i
This i
This i
This i
This i

This i

bar
bar
bar
bar
bar
bar
bar

foo
foo
foo
foo
foo
foo
foo

foo.
foo.
foo.
foo.
foo.
foo.

bar.

bar
bar
bar
bar
bar
bar
bar

{ltextformat}

OUTPUT:

This is foo. This is foo. This
is foo. This is foo. This is foo.
This is foo.

foo
foo
foo
foo
foo
foo
foo

foo.
foo.
foo.
foo.
foo.
foo.
foo.

This is bar.

bar foo bar foo foo. bar foo bar
foo foo. bar foo bar foo foo. bar

foo bar foo foo. bar foo bar foo

foo. bar foo bar foo foo. bar foo

bar foo foo.

{textformat style="email"}

This
This
This
This
This
This

This

is
is
is
is
is
is

is

bar foo
bar foo
bar foo
bar foo
bar foo
bar foo
bar foo

foo.
foo.
foo.
foo.
foo.
foo.

bar.

bar
bar
bar
bar
bar
bar
bar

{ltextformat}

OUTPUT:

foo
foo
foo
foo
foo
foo
foo

foo.
foo.
foo.
foo.
foo.
foo.
foo.

Chapter 8. Custom Functions

This is foo. This is foo. This is foo. This is foo. This is foo. This is

foo.

This is bar.

bar foo bar foo foo. bar foo bar foo foo. bar foo bar foo foo. bar foo
bar foo foo. bar foo bar foo foo. bar foo bar foo foo. bar foo bar foo

foo.

77

Chapter 8. Custom Functions

78

Chapter 9. Config Files

Contfig files are handy for designers to manage global template variables from one
file. One example is template colors. Normally if you wanted to change the color
scheme of an application, you would have to go through each and every template
file and change the colors. With a config file, the colors can be kept in one place, and
only one file needs to be updated.

Example 9-1. Example of config file syntax

global variables
pageTitle = "Main Menu"
bodyBgColor = #000000
tableBgColor = #000000
rowBgColor = #00ff00

[Customer]
pageTitle = "Customer Info"

[Login]
pageTitle = "Login"
focus = "username"
Intro = "™This is a value that spans more
than one line. you must enclose
it in triple quotes."™

hidden section
[.Database]
host=my.domain.com
db=ADDRESSBOOK
user=php-user
pass=foobar

Values of config file variables can be in quotes, but not necessary. You can use either
single or double quotes. If you have a value that spans more than one line, enclose
the entire value with triple quotes ("""). You can put comments into config files by
any syntax that is not a valid config file syntax. We recommend using a # (hash) at
the beginning of the line.

This config file example has two sections. Section names are enclosed in brackets [].
Section names can be arbitrary strings not containing [or] symbols. The four vari-
ables at the top are global variables, or variables not within a section. These variables
are always loaded from the config file. If a particular section is loaded, then the global
variables and the variables from that section are also loaded. If a variable exists both
as a global and in a section, the section variable is used. If you name two variables
the same within a section, the last one will be used.

Contfig files are loaded into templates with the built-in function config_load.

You can hide variables or entire sections by prepending the variable name or section
name with a period. This is useful if your application reads the config files and gets
sensitive data from them that the template engine does not need. If you have third
parties doing template editing, you can be certain that they cannot read sensitive data
from the config file by loading it into the template.

79

Chapter 9. Config Files

80

Chapter 10. Debugging Console

There is a debugging console included with Smarty. The console informs you of all
the included templates, assigned variables and config file variables for the current
invocation of the template. A template named "debug.tpl" is included with the distri-
bution of Smarty which controls the formatting of the console. Set $debugging to true
in Smarty, and if needed set $debug_tpl to the template resource path for debug.tpl
(this is in SMARTY_DIR by default.) When you load the page, a javascript console
window should pop up and give you the names of all the included templates and
assigned variables for the current page. To see the available variables for a particu-
lar templates, see the {debug} template function. To disable the debugging console,
set $debugging to false. You can also temporarily turn on the debugging console by
putting SMARTY_DEBUG in the URL if you enable this option with $debugging_ctrl.

Technical Note: The debugging console does not work when you use the fetch() API,
only when using display(). It is a set of javascript statements added to the very bottom of
the generated template. If you do not like javascript, you can edit the debug.tpl template
to format the output however you like. Debug data is not cached and debug.tpl info is not
included in the output of the debug console.

Note: The load times of each template and config file are in seconds, or fractions thereof.

81

Chapter 10. Debugging Console

82

Chapter 11. Constants

SMARTY_DIR

This should be the full system path to the location of the Smarty class files. If this is
not defined, then Smarty will attempt to determine the appropriate value automati-
cally. If defined, the path must end with a slash.

Example 11-1. SMARTY_DIR

/I set path to Smarty directory
define("SMARTY_DIR","/usr/local/lib/php/Smarty/");

require_once(SMARTY_DIR."Smarty.class.php");

83

Chapter 11. Constants

84

Chapter 12. Variables

$template_dir

This is the name of the default template directory. If you do not supply a resource
type when including files, they will be found here. By default this is "./templates”,
meaning that it will look for the templates directory in the same directory as the
executing php script.

Technical Note: It is not recommended to put this directory under the web server docu-
ment root.

$compile_dir

This is the name of the directory where compiled templates are located. By default
this is "./templates_c", meaning that it will look for the compile directory in the same
directory as the executing php script.

Technical Note: This setting must be either a relative or absolute path. include_path is
not used for writing files.

Technical Note: It is not recommended to put this directory under the web server docu-
ment root.

$config_dir

This is the directory used to store config files used in the templates. Default is "./con-
figs", meaning that it will look for the configs directory in the same directory as the
executing php script.

Technical Note: It is not recommended to put this directory under the web server docu-
ment root.

$plugins_dir

This is the directories where Smarty will look for the plugins that it needs. Default
is "plugins" under the SMARTY_DIR. If you supply a relative path, Smarty will first
look under the SMARTY_DIR, then relative to the cwd (current working directory),
then relative to each entry in your PHP include path.

Technical Note: For best performance, do not setup your plugins_dir to have to use the
PHP include path. Use an absolute pathname, or a path relative to SMARTY_DIR or the
cwd.

85

Chapter 12. Variables

$debugging

This enables the debugging console. The console is a javascript window that informs
you of the included templates and assigned variables for the current template page.

$debug_tpl

This is the name of the template file used for the debugging console. By default, it is
named debug.tpl and is located in the SMARTY_DIR.

$debugging_ctrl

This allows alternate ways to enable debugging. NONE means no alternate meth-
ods are allowed. URL means when the keyword SMARTY_DEBUG is found in the
QUERY_STRING, debugging is enabled for that invocation of the script. If $debug-
ging is true, this value is ignored.

$global_assign

This is a list of variables that are always implicitly assigned to the template engine.
This is handy for making global variables or server variables available to all tem-
plates without having to manually assign them. Each element in the $global_assign
should be either a name of the global variable, or a key/value pair, where the key
is the name of the global array and the value is the array of variables to be as-
signed from that global array. $SCRIPT_NAME is globally assigned by default from
$HTTP_SERVER_VARS.

Technical Note: Server variables can be accessed through the $smarty variable, such
as {$smarty.server.SCRIPT_NAME]}. See the section on the $smarty variable.

$undefined

This sets the value of $undefined for Smarty, default is null. Currently this is only
used to set undefined variables in $global_assign to a default value.

$autoload_filters

86

If there are some filters that you wish to load on every template invocation, you can
specify them using this variable and Smarty will automatically load them for you.
The variable is an associative array where keys are filter types and values are arrays
of the filter names. For example:

$smarty- >autoload_filters = array(pre’ = > array(trim’, 'stamp’),
‘output’ => array(’convert’));

Chapter 12. Variables

$compile_check

Upon each invocation of the PHP application, Smarty tests to see if the current tem-
plate has changed (different time stamp) since the last time it was compiled. If it has
changed, it recompiles that template. If the template has not been compiled, it will
compile regardless of this setting. By default this variable is set to true. Once an ap-
plication is put into production (templates won’t be changing), the compile_check
step is no longer needed. Be sure to set $compile_check to "false" for maximal perfor-
mance. Note that if you change this to "false" and a template file is changed, you will
not see the change since the template will not get recompiled. If caching is enabled
and compile_check is enabled, then the cache files will get regenerated if an involved
template file or config file was updated. See $force_compile or clear_compiled_tpl.

$force_compile

This forces Smarty to (re)compile templates on every invocation. This setting over-
rides $compile_check. By default this is disabled. This is handy for development and
debugging. It should never be used in a production environment. If caching is en-
abled, the cache file(s) will be regenerated every time.

$caching

This tells Smarty whether or not to cache the output of the templates. By default
this is set to 0, or disabled. If your templates generate redundant redundant content,
it is advisable to turn on caching. This will result in significant performance gains.
You can also have multiple caches for the same template. A value of 1 or 2 enables
caching. 1 tells Smarty to use the current $cache_lifetime variable to determine if the
cache has expired. A value of 2 tells Smarty to use the cache_lifetime value at the time
the cache was generated. This way you can set the cache_lifetime just before fetching
the template to have granular control over when that particular cache expires. See
also is_cached.

If $compile_check is enabled, the cached content will be regenerated if any of the
templates or config files that are part of this cache are changed. If $force_compile is
enabled, the cached content will always be regenerated.

$cache_dir

This is the name of the directory where template caches are stored. By default this is
"./cache", meaning that it will look for the cache directory in the same directory as
the executing php script. You can also use your own custom cache handler function
to control cache files, which will ignore this setting.

Technical Note: This setting must be either a relative or absolute path. include_path is
not used for writing files.

Technical Note: It is not recommended to put this directory under the web server docu-
ment root.

87

Chapter 12. Variables

$cache_lifetime

This is the length of time in seconds that a template cache is valid. Once this time
has expired, the cache will be regenerated. $caching must be set to "true" for
$cache_lifetime to have any purpose. A value of -1 will force the cache to never
expire. A value of 0 will cause the cache to always regenerate (good for testing only,
to disable caching a more efficient method is to set $caching = false.)

If $force_compile is enabled, the cache files will be regenerated every time, effectively
disabling caching. You can clear all the cache files with the clear_all_cache() function,
or individual cache files (or groups) with the clear_cache() function.

Technical Note: If you want to give certain templates their own cache lifetime, you could
do this by setting $caching = 2, then set $cache_lifetime to a unique value just before
calling display() or fetch().

$cache_handler_func

You can supply a custom function to handle cache files instead of using the built-
in method using the $cache_dir. See the custom cache handler function section for
details.

$cache_modified_check

If set to true, Smarty will respect the If-Modified-Since header sent from the client. If
the cached file timestamp has not changed since the last visit, then a "304 Not Mod-
ified" header will be sent instead of the content. This works only on cached content
without insert tags.

$config_overwrite

If set to true, variables read in from config files will overwrite each other. Otherwise,
the variables will be pushed onto an array. This is helpful if you want to store arrays
of data in config files, just list each element multiple times. true by default.

$config_booleanize

If set to true, config file values of on/true/yes and off/false/no get converted to
boolean values automatically. This way you can use the values in the template like
so: {if #foobar#} ... {/if}. If foobar was on, true or yes, the {if} statement will execute.
true by default.

$config_read_hidden

88

If set to true, hidden sections (section names beginning with a period) in config files
can be read from templates. Typically you would leave this false, that way you can
store sensitive data in the config files such as database parameters and not worry
about the template loading them. false by default.

Chapter 12. Variables

$config_fix_newlines

If set to true, mac and dos newlines (\r and \r\n) in config files are converted to \n
when they are parsed. true by default.

$default_template_handler_func

This function is called when a template cannot be obtained from its resource.

$php_handling

This tells Smarty how to handle PHP code embedded in the templates. There are four
possible settings, default being SMARTY_PHP_PASSTHRU. Note that this does NOT
affect php code within {php}{/php} tags in the template.

« SMARTY_PHP_PASSTHRU - Smarty echos tags as-is.

« SMARTY_PHP_QUOTE - Smarty quotes the tags as html entities.

« SMARTY_PHP_REMOVE - Smarty removes the tags from the templates.
¢ SMARTY_PHP_ALLOW - Smarty will execute the tags as PHP code.

NOTE: Embedding PHP code into templates is highly discouraged. Use custom func-
tions or modifiers instead.

$security

$security true/false, default is false. Security is good for situations when you have
untrusted parties editing the templates (via ftp for example) and you want to reduce
the risk of system security compromises through the template language. Turning on
security enforces the following rules to the template language, unless specifially over-
ridden with $security_settings:

« If $php_handling is set to SMARTY_PHP_ALLOW, this is implicitly changed to
SMARTY_PHP_PASSTHRU

» PHP functions are not allowed in IF statements, except those specified in the $se-
curity_settings

« templates can only be included from directories listed in the $secure_dir array

¢ local files can only be fetched from directories listed in the $secure_dir array using
{fetch}

« {php}{/php} tags are not allowed

« PHP functions are not allowed as modifiers, except those specified in the $secu-
rity_settings

$secure_dir

This is an array of all local directories that are considered secure. {include} and {fetch}
use this when security is enabled.

89

Chapter 12. Variables

$security _settings

These are used to override or specify the security settings when security is enabled.
These are the possible settings:

o PHP_HANDLING - true/false. If set to true, the $php_handling setting is not
checked for security.

+ IF_FUNCS - This is an array of the names of permitted PHP functions in IF state-
ments.

« INCLUDE_ANY - true/false. If set to true, any template can be included from the
file system, regardless of the $secure_dir list.

o PHP_TAGS - true/false. If set to true, {php}{/php} tags are permitted in the tem-
plates.

« MODIFIER_FUNCS - This is an array of the names of permitted PHP functions
used as variable modifiers.

$trusted_dir

$trusted_dir is only for use when $security is enabled. This is an array of all directo-
ries that are considered trusted. Trusted directories are where you keep php scripts
that are executed directly from the templates with {include_php}.

$left_delimiter
This is the left delimiter used by the template language. Default is "{".

$right_delimiter
This is the right delimiter used by the template language. Default is "}".

$compiler_class

Specifies the name of the compiler class that Smarty will use to compile the templates.
The default is ‘Smarty_Compiler’. For advanced users only.

$request_vars_order

The order in which request variables are registered, similar to variables_order in
php.ini

$compile_id

Persistant compile identifier. As an alternative to passing the same compile_id to each
and every function call, you can set this compile_id and it will be used implicitly
thereafter.

$use_sub_dirs

Set this to false if your PHP environment does not allow the creation of sub directories
by Smarty. Sub directories are more efficient, so use them if you can.

90

Chapter 12. Variables

$default_modifiers

This is an array of modifiers to implicitly apply to every variable in a template. For
example, to HTML-escape every variable by default, use array(’escape:"htmlall"’); To
make a variable exempt from default modifiers, pass the special "nodefaults" modi-
fier to it, such as {$var | nodefaults}.

91

Chapter 12. Variables

92

Chapter 13. Methods

append

append_|

void append (mixed var);
void append (string varname , mixed var);
void append (string varname , mixed var, boolean merge);

This is used to append an element to an assigned array. If you append to a string
value, it is converted to an array value and then appended to. You can explicitly pass
name/value pairs, or associative arrays containing the name/value pairs. If you pass
the optional third parameter of true, the value will be merged with the current array
instead of appended.

Technical Note: The merge parameter respects array keys, so if you merge two numeri-
cally indexed arrays, they may overwrite each other or result in non-sequential keys. This
is unlike the array_merge() function of PHP which wipes out numerical keys and renum-
bers them.

Example 13-1. append

/I passing name/value pairs
$smarty->append("Name","Fred");
$smarty->append("Address”,$address);

/I passing an associative array
$smarty->append(array(“city” => "Lincoln","state” => "Nebraska"));

by ref

void append_by ref (string varname , mixed var);
void append_by ref (string varname , mixed var, boolean merge);

This is used to append values to the templates by reference. If you append a variable
by reference then change its value, the appended value sees the change as well. For
objects, append_by_ref() also avoids an in-memory copy of the appended object. See
the PHP manual on variable referencing for an in-depth explanation. If you pass the
optional third parameter of true, the value will be merged with the current array
instead of appended.

Technical Note: The merge parameter respects array keys, so if you merge two numeri-
cally indexed arrays, they may overwrite each other or result in non-sequential keys. This
is unlike the array_merge() function of PHP which wipes out numerical keys and renum-
bers them.

93

Chapter 13. Methods

assign

Example 13-2. append_by_ref

/I appending name/value pairs
$smarty->append_by_ref("Name",$myname);
$smarty->append_by_ref("Address",$address);

void assign (mixed var);
void assign (string varname , mixed var);

This is used to assign values to the templates. You can explicitly pass name/value
pairs, or associative arrays containing the name/value pairs.

Example 13-3. assign

/I passing name/value pairs
$smarty->assign("Name","Fred");
$smarty->assign("Address",$address);

/l passing an associative array
$smarty->assign(array(“city” => "Lincoln","state" => "Nebraska"));

assign_by_ref

void assign_by ref (string varname , mixed var);

This is used to assign values to the templates by reference instead of making a copy.
See the PHP manual on variable referencing for an explanation.

Technical Note: This is used to assign values to the templates by reference. If you assign
a variable by reference then change its value, the assigned value sees the change as well.
For objects, assign_by_ref() also avoids an in-memory copy of the assigned object. See
the PHP manual on variable referencing for an in-depth explanation.

Example 13-4. assign_by_ref

/I passing name/value pairs
$smarty->assign_by_ref("Name",$myname);
$smarty->assign_by_ref("Address”,$address);

clear_all_assign

94

void clear_all_assign 0;

This clears the values of all assigned variables.

Chapter 13. Methods

Example 13-5. clear_all_assign

/I clear all assigned variables
$smarty->clear_all_assign();

clear_all_cache

void clear_all_cache (int expire time);

This clears the entire template cache. As an optional parameter, you can supply a
minimum age in seconds the cache files must be before they will get cleared.

Example 13-6. clear_all_cache

/I clear the entire cache
$smarty->clear_all_cache();

clear_assign

void clear_assign (string var);

This clears the value of an assigned variable. This can be a single value, or an array
of values.

Example 13-7. clear_assign

/I clear a single variable
$smarty->clear_assign("Name");

/I clear multiple variables
$smarty->clear_assign(array("Name","Address","Zip"));

clear_cache

void clear_cache (string template , string [cache id] , string [compile
id] , int [expire time]);

This clears the cache for a specific template. If you have multiple caches for this tem-
plate, you can clear a specific cache by supplying the cache id as the second param-
eter. You can also pass a compile id as a third parameter. You can "group" templates
together so they can be removed as a group. See the caching section for more infor-
mation. As an optional fourth parameter, you can supply a minimum age in seconds
the cache file must be before it will get cleared.

95

Chapter 13. Methods

Example 13-8. clear_cache

/I clear the cache for a template
$smarty->clear_cache("index.tpl");

/I clear the cache for a particular cache id in an multiple-cache template
$smarty->clear_cache("index.tpl","CACHEID");

clear_compiled_tpl

void clear_compiled_tpl (string tpl_file);

This clears the compiled version of the specified template resource, or all compiled
template files if one is not specified. This function is for advanced use only, not nor-
mally needed.

Example 13-9. clear_compiled_tpl

/I clear a specific template resource
$smarty->clear_compiled_tpl(“index.tpl");

/I clear entire compile directory
$smarty->clear_compiled_tpl();

clear_config

void clear_config (string [var]);

This clears all assigned config variables. If a variable name is supplied, only that
variable is cleared.

Example 13-10. clear_config

/I clear all assigned config variables.
$smarty->clear_config();

/I clear one variable
$smarty->clear_config('foobar’);

config_load

96

void config_load (string file , string [section]);
This loads config file data and assigns it to the template. This works identical to the
template config_load function.

Technical Note: As of Smarty 2.4.0, assigned template variables are kept across invo-
cations of fetch() and display(). Config vars loaded from config_load() are always global

display

Chapter 13. Methods

scope. Config files are also compiled for faster execution, and respect the force_compile
and compile_check settings.

Example 13-11. config_load

/I load config variables and assign them
$smarty->config_load('my.conf’);

/I load a section
$smarty->config_load(’'my.conf’,'foobar’);

void display (string template , string [cache_id] , string
[compile_id]);

This displays the template. Supply a valid template resource type and path. As an
optional second parameter, you can pass a cache id. See the caching section for more
information.

As an optional third parameter, you can pass a compile id. This is in the event that
you want to compile different versions of the same template, such as having sepa-
rate templates compiled for different languages. Another use for compile_id is when
you use more than one $template_dir but only one $compile_dir. Set a separate com-
pile_id for each $template_dir, otherwise templates of the same name will overwrite
each other. You can also set the $compile_id variable once instead of passing this to
each call to display().

Example 13-12. display

include("Smarty.class.php");
$smarty = new Smarty;
$smarty->caching = true;

/Il only do db calls if cache doesn’t exist
if(1$smarty->is_cached("index.tpl"))

/I dummy up some data
$address = "245 N 50th";
$db_data = array(

"City" => "Lincoln",
"State" => "Nebraska",
"Zip" = > "68502"

)i
$smarty->assign("Name","Fred");

$smarty->assign("Address",$address);
$smarty->assign($db_data);

}

/I display the output
$smarty->display(“index.tpl");

Use the syntax for template resources to display files outside of the $template_dir
directory.

97

Chapter 13. Methods

fetch

98

Example 13-13. function display template resource examples

/I absolute filepath

$smarty->display("/usr/local/include/templates/header.tpl");

/I absolute filepath (same thing)

$smarty->display(“file:/usr/local/include/templates/header.tpl");

/Il windows absolute filepath (MUST use “file:" prefix)
$smarty->display(“file:C:/www/pub/templates/header.tpl");

/I include from template resource named "db"

$smarty->display("db:header.tpl");

string

fetch (string template , string

[compile_id]);

This returns the template output instead of displaying it. Supply a valid template
resource type and path. As an optional second parameter, you can pass a cache id.
See the caching section for more information.

As an optional third parameter, you can pass a compile id. This is in the event that
you want to compile different versions of the same template, such as having sepa-
rate templates compiled for different languages. Another use for compile_id is when
you use more than one $template_dir but only one $compile_dir. Set a separate com-
pile_id for each $template_dir, otherwise templates of the same name will overwrite
each other. You can also set the $compile_id variable once instead of passing this to

each call to fetch().

Example 13-14. fetch

include("Smarty.class.php");
$smarty = new Smarty;

$smarty->caching = true;

/I only do db calls if cache doesn’t exist
if(!$smarty->is_cached("index.tpl"))

}

/l dummy up some data
$address = "245 N 50th";
$db_data = array(

"City" => "Lincoln",
"State" => "Nebraska",
"Zip" = > "68502"

);
$smarty->assign("Name","Fred");

$smarty->assign("Address",$address);
$smarty->assign($db_data);

/I capture the output
$output = $smarty->fetch("index.tpl");

/I do something with $output here

Chapter 13. Methods

echo $output;

get_config_vars

array get_config_vars (string [varname]);

This returns the given loaded config variable value. If no parameter is given, an array
of all loaded config variables is returned.

Example 13-15. get_config_vars

/I get loaded config template var ‘foo’
$foo = $smarty->get_config_vars(foo’);

/I get all loaded config template vars
$config_vars = $smarty->get_config_vars();

/I take a look at them
print_r($config_vars);

get_registered_object

array get_registered_object (string object_name);

This returns a reference to a registered object. This is useful from within a custom
function when you need direct access to a registered object.

Example 13-16. get_registered_object

function smarty_block_foo($params, &$smarty) {
if (isset[$params['object]]) {
/I get reference to registered object
$obj_ref =& $smarty->&get_registered_object($params['object’]);
/I use $obj_ref is now a reference to the object

}
}

get_template_vars

array get_template_vars (string [varname]);

This returns the given assigned variable value. If no parameter is given, an array of
all assigned variables is returned.

99

Chapter 13. Methods

Example 13-17. get_template_vars

/I get assigned template var 'foo’
$foo = $smarty->get_template_vars('foo’);

/I get all assigned template vars
$tpl_vars = $smarty->get_template_vars();

/I take a look at them
print_r($tpl_vars);

is_cached

void is_cached (string template , [string cache_id J);

This returns true if there is a valid cache for this template. This only works if caching
is set to true.

Example 13-18. is_cached
$smarty->caching = true;
if(!$smarty->is_cached("index.tpl")) {

/l do database calls, assign vars here
}
$smarty->display(“index.tpl");

You can also pass a cache id as an an optional second parameter in case you want
multiple caches for the given template.

Example 13-19. is_cached with multiple-cache template
$smarty->caching = true;
if('$smarty->is_cached("index.tpl","FrontPage")) {

/l do database calls, assign vars here
}

$smarty->display("index.tpl","FrontPage");
load_filter
void load_filter (string type , string name);

This function can be used to load a filter plugin. The first argument specifies the type
of the filter to load and can be one of the following: "pre’, ‘post’, or ‘output’. The
second argument specifies the name of the filter plugin, for example, "trim’.

100

Chapter 13. Methods

Example 13-20. loading filter plugins
$smarty->load_filter('pre’, 'trim’); // load prefilter named 'trim’
$smarty->load_filter('pre’, 'datefooter’); // load another prefilter named 'datefooter’

$smarty->load_filter('output’, ‘'compress’); // load output filter named 'com-
press’

register_block

void register_block (string name, string impl);

Use this to dynamically register block functions plugins. Pass in the block function
name, followed by the PHP function name that implements it.
Example 13-21. register_block

I PHP *
$smarty->register_block("translate”, "do_translation");
function do_translation ($params, $content, &$smarty) {
if ($content) {
$lang = $params[lang’];
/I do some translation with $content
echo $translation;

}

{* template *}
{translate lang="br"}
Hello, world!

{ltranslate}

register_compiler_function

void register_compiler_function (string name, string impl);

Use this to dynamically register a compiler function plugin. Pass in the compiler
function name, followed by the PHP function that implements it.

register_function

void register_function (string name, string impl);

Use this to dynamically register template function plugins. Pass in the template func-
tion name, followed by the PHP function name that implements it.

101

Chapter 13. Methods

Example 13-22. register_function
$smarty->register_function("date_now", "print_current_date");

function print_current_date ($params) {
extract($params);
if(empty($format))
$format="%b %e, %Y";
echo strftime($format,time());

}

/I now you can use this in Smarty to print the current date: {date_now}
/I or, {date_now format="%Y/%m/%d"} to format it.

register_modifier

void register_modifier (string name, string impl);

Use this to dynamically register modifier plugin. Pass in the template modifier name,
followed by the PHP function that it implements it.

Example 13-23. register_modifier
/I let's map PHP’s stripslashes function to a Smarty modifier.
$smarty->register_modifier("sslash”,"stripslashes");

/I now you can use {$var|sslash} to strip slashes from variables

register_object

void register_object (string object_ name , object $object , array allowed
methods/properties , boolean format);

This is to register an object for use in the templates. See the object section of the
manual for examples.

register_outputfilter

102

void register_outputfilter (string function_name);

Use this to dynamically register outputfilters to operate on a template’s output before
it is displayed. See template output filters for more information on how to set up an
output filter function.

Chapter 13. Methods

register_postfilter

void register_postfilter (string function_name);

Use this to dynamically register postfilters to run templates through after they are
compiled. See template postfilters for more information on how to setup a postfilter-
ing function.

register_prefilter

void register_prefilter (string function_name);

Use this to dynamically register prefilters to run templates through before they are
compiled. See template prefilters for more information on how to setup a prefiltering
function.

register_resource

void register_resource (string name, array resource_funcs);

Use this to dynamically register a resource plugin with Smarty. Pass in the name of
the resource and the array of PHP functions implementing it. See template resources
for more information on how to setup a function for fetching templates.

Example 13-24. register_resource

$smarty->register_resource("db"”, array("db_get_template",
"db_get_timestamp",
"db_get_secure",
"db_get_trusted"));

trigger_error

void trigger_error (string error_msg , [int level 1]);

This function can be used to output an error message using Smarty. level parameter
can be one of the values used for trigger_error() PHP function, i.e. E_USER_NOTICE,
E_USER_WARNING, etc. By default it's E_USER_WARNING.

template_exists
bool template_exists (string template);

103

Chapter 13. Methods

This function checks whether the specified template exists. It can accept either a path
to the template on the filesystem or a resource string specifying the template.

unregister_block

void unregister_block (string name);

Use this to dynamically unregister block function plugin. Pass in the block function
name.

unregister_compiler_function

void unregister_compiler_function (string name);

Use this to dynamically unregister a compiler function. Pass in the name of the com-
piler function.

unregister_function

void unregister_function (string name);

Use this to dynamically unregister template function plugin. Pass in the template
function name.

Example 13-25. unregister_function
/I we don't want template designers to have access to system files

$smarty->unregister_function("fetch");

unregister_modifier

void unregister_modifier (string name);

Use this to dynamically unregister modifier plugin. Pass in the template modifier
name.

Example 13-26. unregister_modifier
/I we don’t want template designers to strip tags from elements

$smarty->unregister_modifier("strip_tags");

104

Chapter 13. Methods

unregister_object

void unregister_object (string object_name);

Use this to unregister an object.

unregister_outpultfilter

void unregister_outpultfilter (string function_name);

Use this to dynamically unregister an output filter.

unregister_postfilter

void unregister_postfilter (string function_name);

Use this to dynamically unregister a postfilter.

unregister_prefilter

void unregister_prefilter (string function_name);

Use this to dynamically unregister a prefilter.

unregister_resource

void unregister_resource (string name);

Use this to dynamically unregister a resource plugin. Pass in the name of the resource.

Example 13-27. unregister_resource

$smarty->unregister_resource("db");

105

Chapter 13. Methods

106

Chapter 14. Caching

Caching is used to speed up a call to display() or fetch() by saving its output to a file.
If a cached version of the call is available, that is displayed instead of regenerating the
output. Caching can speed things up tremendously, especially templates with longer
computation times. Since the output of display() or fetch() is cached, one cache file
could conceivably be made up of several template files, config files, etc.

Since templates are dynamic, it is important to be careful what you are caching and
for how long. For instance, if you are displaying the front page of your website that
does not change its content very often, it might work well to cache this page for an
hour or more. On the other hand, if you are displaying a page with a weather map
containing new information by the minute, it would not make sense to cache this

page.

Setting Up Caching
The first thing to do is enable caching. This is done by setting $caching = true (or 1.)

Example 14-1. enabling caching

require('Smarty.class.php’);
$smarty = new Smarty;

$smarty->caching = true;
$smarty->display(index.tpl’);

With caching enabled, the function call to display('index.tpl’) will render the tem-
plate as usual, but also saves a copy of its output to a file (a cached copy) in the
$cache_dir. Upon the next call to display(‘index.tpl’), the cached copy will be used
instead of rendering the template again.

Technical Note: The files in the $cache_dir are named similar to the template name.
Although they end in the ".php" extention, they are not really executable php scripts. Do
not edit these files!

Each cached page has a limited lifetime determined by $cache_lifetime. The default
value is 3600 seconds, or 1 hour. After that time expires, the cache is regenerated. It
is possible to give individual caches their own expiration time by setting $caching =
2. See the documentation on $cache_lifetime for details.

Example 14-2. setting cache_lifetime per cache

require('Smarty.class.php’);
$smarty = new Smarty;

$smarty->caching = 2; // lifetime is per cache

/I set the cache_lifetime for index.tpl to 15 minutes
$smarty->cache_lifetime = 300;
$smarty->display(index.tpl’);

/I set the cache_lifetime for home.tpl to 1 hour
$smarty->cache_lifetime = 3600;
$smarty->display(’home.tpl’);

/I NOTE: the following $cache_lifetime setting will not work when $caching = 2.
/I The cache lifetime for home.tpl has already been set
/I to 1 hour, and will no longer respect the value of $cache_lifetime.

107

Chapter 14. Caching

108

/I The home.tpl cache will still expire after 1 hour.
$smarty->cache_lifetime = 30; // 30 seconds
$smarty->display(’home.tpl’);

If $compile_check is enabled, every template file and config file that is involved with
the cache file is checked for modification. If any of the files have been modified since
the cache was generated, the cache is immediately regenerated. This is a slight over-
head so for optimum performance, leave $compile_check set to false.

Example 14-3. enabling $compile_check

require('Smarty.class.php’);
$smarty = new Smarty;

$smarty->caching = true;
$smarty->compile_check = true;

$smarty->display(’index.tpl’);

If $force_compile is enabled, the cache files will always be regenerated. This effec-
tively turns off caching. $force_compile is usually for debugging purposes only, a
more efficient way of disabling caching is to set $caching = false (or 0.)

The is_cached() function can be used to test if a template has a valid cache or not. If
you have a cached template that requires something like a database fetch, you can
use this to skip that process.

Example 14-4. using is_cached()

require('Smarty.class.php’);
$smarty = new Smarty;

$smarty->caching = true;

if(!$smarty->is_cached(index.tpl')) {

/I No cache available, do variable assignments here.
$contents = get_database_contents();
$smarty->assign($contents);

}
$smarty->display(index.tpl’);

You can keep parts of a page dynamic with the insert template function. Let’s say the
whole page can be cached except for a banner that is displayed down the right side
of the page. By using an insert function for the banner, you can keep this element
dynamic within the cached content. See the documentation on insert for details and
examples.

You can clear all the cache files with the clear_all_cache() function, or individual
cache files (or groups) with the clear_cache() function.

Example 14-5. clearing the cache

require('Smarty.class.php’);
$smarty = new Smarty;

$smarty->caching = true;

/I clear out all cache files
$smarty->clear_all_cache();

/I clear only cache for index.tpl
$smarty->clear_cache('index.tpl’);

Chapter 14. Caching

$smarty->display(index.tpl’);

Multiple Caches Per Page

You can have multiple cache files for a single call to display() or fetch(). Let’s say that
a call to display(‘index.tpl’) may have several different output contents depending
on some condition, and you want separate caches for each one. You can do this by
passing a cache_id as the second parameter to the function call.

Example 14-6. passing a cache_id to display()

require('Smarty.class.php’);
$smarty = new Smarty;

$smarty->caching = true;
$my_cache_id = $_GET[article_id7;
$smarty->display('index.tpl’,$my_cache_id);

Above, we are passing the variable $my_cache_id to display() as the cache_id. For
each unique value of $my_cache_id, a separate cache will be generated for index.tpl.
In this example, "article_id" was passed in the URL and is used as the cache_id.

Technical Note: Be very cautious when passing values from a client (web browser) into
Smarty (or any PHP application.) Although the above example of using the article_id from
the URL looks handy, it could have bad consequences. The cache_id is used to create
a directory on the file system, so if the user decided to pass an extremely large value
for article_id, or write a script that sends random article_ids at a rapid pace, this could
possibly cause problems at the server level. Be sure to sanitize any data passed in before
using it. In this instance, maybe you know the article_id has a length of 10 characters and
is made up of alpha-numerics only, and must be a valid article_id in the database. Check
for this!

Be sure to pass the same cache_id as the second parameter to is_cached() and
clear_cache().

Example 14-7. passing a cache_id to is_cached()

require('Smarty.class.php’);
$smarty = new Smarty;

$smarty->caching = true;

$my_cache_id = $_GET[article_id";
if(1$smarty->is_cached(index.tpl’,$my_cache_id)) {

/I No cache available, do variable assignments here.

$contents = get_database_contents();
$smarty->assign($contents);

}

$smarty->display(’index.tpl',$my_cache_id);

You can clear all caches for a particular cache_id by passing null as the first parameter
to clear_cache().

109

Chapter 14. Caching

Example 14-8. clearing all caches for a particular cache_id

require('Smarty.class.php’);
$smarty = new Smarty;

$smarty->caching = true;

/I clear all caches with "sports" as the cache_id
$smarty->clear_cache(null,"sports");

$smarty->display(index.tpl’,"sports");

In this manner, you can "group" your caches together by giving them the same
cache_id.

Cache Groups

110

You can do more elaborate grouping by setting up cache_id groups. This is accom-
plished by separating each sub-group with a vertical bar "|" in the cache_id value.
You can have as many sub-groups as you like.

Example 14-9. cache_id groups

require('Smarty.class.php’);
$smarty = new Smarty;

$smarty->caching = true;

/I clear all caches with "sports|basketball" as the first two cache_id groups
$smarty->clear_cache(null,"sports|basketball");

/I clear all caches with "sports" as the first cache_id group. This would
/I include "sports|basketball", or "sports|(anything)|(anything)|(anything)]..."
$smarty->clear_cache(null,"sports");

$smarty->display('index.tpl’,"sports|basketball");

Technical Note: The cache grouping does NOT use the path to the template as any
part of the cache_id. For example, if you have display('themes/blue/index.tpl’), you cannot
clear the cache for everything under the "themes/blue” directory. If you want to do that, you
must group them in the cache_id, such as display('themes/blue/index.tpl’,themes|blue’);
Then you can clear the caches for the blue theme with clear_cache(null, themes|blue’);

Chapter 15. Advanced Features

Objects

Smarty allows access to PHP objects through the templates. There are two ways to
access them. One way is to register objects to the template, then use access them via
syntax similar to custom functions. The other way is to assign objects to the templates
and access them much like any other assigned variable. The first method has a much
nicer template syntax. It is also more secure, as a registered object can be restricted
to certain methods or properties. However, a registered object cannot be looped over
or assigned in arrays of objects, etc. The method you choose will be determined by
your needs, but use the first method whenever possible to keep template syntax to a
minimum.

If security is enabled, no private methods or functions can be accessed (begininning
with "_"). If a method and property of the same name exist, the method will be used.

You can restrict the methods and properties that can be accessed by listing them in
an array as the third registration parameter.

By default, parameters passed to objects through the templates are passed the same
way custom functions get them. An associative array is passed as the first parameter,
and the smarty object as the second. If you want the parameters passed one at a time
for each argument like traditional object parameter passing, set the fourth registra-
tion parameter to false.

Example 15-1. using a registered or assigned object

<?php
/I the object

class My_Object() {

function methl($params, &$smarty_obj) {
return "this is my methl";

}

}

$myobj = new My_Obiject;

/I registering the object (will be by reference)
$smarty->register_object("foobar",$myobj);

/I if we want to restrict access to certain methods or properties, list them
$smarty->register_object("foobar",$myobj,array('methl’,’meth2’,’prop1’));

/I if you want to use the traditional object parameter format, pass a boolean of false
$smarty->register_object("foobar",$myobj,null,false);

/I We can also assign objects. Assign by ref when possible.
$smarty->assign_by_ref("myobj", $myobj);

$smarty->display(“index.tpl");
?>

TEMPLATE:

{* access our registered object *}
{foobar->methl pl="foo" p2=$bar}

{* you can also assign the output *}
{foobar->methl pl="foo" p2=$bar assign="output"}
the output was {$output)

{* access our assigned object *}
{$myobj->meth1("foo",$bar)}

111

Chapter 15.

Prefilters

Advanced Features

Template prefilters are PHP functions that your templates are ran through before
they are compiled. This is good for preprocessing your templates to remove un-
wanted comments, keeping an eye on what people are putting in their templates,
etc. Prefilters can be either registered or loaded from the plugins directory by us-
ing load_filter() function or by setting $autoload_filters variable. Smarty will pass
the template source code as the first argument, and expect the function to return the
resulting template source code.

Example 15-2. using a template prefilter

<?php
/I put this in your application
function remove_dw_comments($tpl_source, &$smarty)

{
}

/I register the prefilter
$smarty->register_prefilter("remove_dw_comments");
$smarty->display(“index.tpl");

?>

return preg_replace("/ <l--#.*-- >/U","" $tpl_source);

{* Smarty template index.tpl *}
<I--# this line will get removed by the prefilter -- >

Postfilters

Output F

112

Template postfilters are PHP functions that your templates are ran through after they
are compiled. Postfilters can be either registered or loaded from the plugins directory
by using load_filter() function or by setting $autoload_filters variable. Smarty will
pass the compiled template code as the first argument, and expect the function to
return the result of the processing.

Example 15-3. using a template postfilter

<?php
/I put this in your application
function add_header_comment($tpl_source, &$smarty)

{
}

/I register the postfilter
$smarty->register_postfilter("add_header_comment™);
$smarty->display(“index.tpl");

?>

return <?php echo \" <!-- Created by Smarty! -- >\n\" ? >\n".$tpl_source;

{* compiled Smarty template index.tpl *}
<l-- Created by Smarty! -- >
{* rest of template content... *}

ilters

When the template is invoked via display() or fetch(), its output can be sent through
one or more output filters. This differs from postfilters because postfilters operate on
compiled templates before they are saved to the disk, and output filters operate on
the template output when it is executed.

Chapter 15. Advanced Features

Output filters can be either registered or loaded from the plugins directory by using
load_filter() function or by setting $autoload_filters variable. Smarty will pass the
template output as the first argument, and expect the function to return the result of
the processing.

Example 15-4. using a template outputfilter

<?php
/I put this in your application
function protect_email($tpl_output, &$smarty)

$tpl_output =
preg_replace('!(\S+)@([a-zA-Z0-9\.\-]+\.([a-zA-Z]{2,3}|[0-9]{1,3}))"",
'$1%40$2’, $tpl_output);
return $tpl_output;
}

/I register the outputfilter
$smarty->register_outputfilter("protect_email");
$smarty->display(“index.tpl");

/Il now any occurrence of an email address in the template output will have
/I a simple protection against spambots
?>

Cache Handler Function

As an alternative to using the default file-based caching mechanism, you can specify
a custom cache handling function that will be used to read, write and clear cached
files.

Create a function in your application that Smarty will use as a cache handler. Set
the name of it in the $cache_handler_func class variable. Smarty will now use this
to handle cached data. The first argument is the action, which will be one of ‘read’,
‘write” and “clear’. The second parameter is the Smarty object. The third parameter
is the cached content. Upon a write, Smarty passes the cached content in these pa-
rameters. Upon a ‘read’, Smarty expects your function to accept this parameter by
reference and populate it with the cached data. Upon a “clear’, pass a dummy vari-
able here since it is not used. The fourth parameter is the name of the template file
(needed for read /write), the fifth parameter is the cache_id (optional), and the sixth
is the compile_id (optional).

Example 15-5. example using MySQL as a cache source

<?php
/*

example usage:

include(’'Smarty.class.php’);
include(’'mysqgl_cache_handler.php’);

$smarty = new Smarty;
$smarty- >cache_handler_func = 'mysql_cache_handler’;

$smarty- >display(index.tpl’);

mysql database is expected in this format:

create database SMARTY_CACHE;

113

Chapter 15. Advanced Features

create table CACHE_PAGES(

CachelD char(32) PRIMARY KEY,
CacheContents MEDIUMTEXT NOT NULL
);

*/
function mysql_cache_handler($action, &$smarty_obj, &$cache_content, $tpl_file=null, $cache_id=null, $compile
{

/I set db host, user and pass here

$db_host = ’localhost’;
$db_user = 'myuser’;

$db_pass = 'mypass’;
$db_name = 'SMARTY_CACHE’;
$use_gzip = false;

/I create unique cache id
$CachelD = md5($tpl_file.$cache_id.$compile_id);

if(! $link = mysql_pconnect($db_host, $db_user, $db_pass)) {

$smarty_obj- >_trigger_error_msg("cache_handler: could not connect to database");
return false;

mysql_select_db($db_name);

switch ($action) {
case 'read’:
/I save cache to database

$results = mysql_query("select CacheContents from CACHE_PAGES where CachelD="$CachelD");
if('$results) {

$smarty_obj- >_trigger_error_msg("cache_handler: query failed.");
}
$row = mysqgl_fetch_array($results,MYSQL_ASSOC);

if(fuse_gzip && function_exists("gzuncompress"”)) {

$cache_contents = gzuncompress($row['CacheContents"]);
} else {

$cache_contents = $row["CacheContents"];

$return = $results;

break;

case 'write’:

/I save cache to database

if(fuse_gzip && function_exists("gzcompress")) {
/I compress the contents for storage efficiency
$contents = gzcompress($cache_content);

} else {

$contents = $cache_content;

$results = mysql_query("replace into CACHE_PAGES values(
'$CachelD’,

".addslashes($contents).™)

)
if(!$results) {
$smarty_obj- >_trigger_error_msg("cache_handler: query failed.");

$return = S$results;

break;

case ’clear’:

/I clear cache info

iflempty($cache_id) && empty($compile_id) && empty($tpl_file)) {
/I clear them all
$results = mysql_query("delete from CACHE_PAGES");

} else {

$results = mysql_query("delete from CACHE_PAGES where CachelD="$CachelD");
114

Chapter 15. Advanced Features

}
if(1$results) {
$smarty_obj- >_trigger_error_msg("cache_handler: query failed.");

$return = S$results;

break;

default:

/I error, unknown action

$smarty_obj- >_trigger_error_msg("cache_handler: unknown action \"$action\"");
$return = false;

break;

}
mysql_close($link);
return $return;

?>

Resources

The templates may come from a variety of sources. When you display or fetch a
template, or when you include a template from within another template, you supply
a resource type, followed by the appropriate path and template name.

Templates from $template_dir

Templates from the $template_dir do not require a template resource, although you
can use the file: resource for consistancy. Just supply the path to the template you
want to use relative to the $template_dir root directory.

Example 15-6. using templates from $template_dir

/I from PHP script

$smarty->display(“index.tpl");
$smarty->display("admin/menu.tpl");
$smarty->display(“file:admin/menu.tpl"); // same as one above

{* from within Smarty template *}
{include file="index.tpl"}
{include file="file:index.tpl"} {* same as one above *}

Templates from any directory

Templates outside of the $template_dir require the file: template resource type, fol-
lowed by the absolute path and name of the template.

Example 15-7. using templates from any directory
/I from PHP script
$smarty->display(“file:/export/templates/index.tpl");
$smarty->display(“file:/path/to/my/templates/menu.tpl");

{* from within Smarty template *}
{include file="file:/usr/local/share/templates/navigation.tpl"}

115

Chapter 15. Advanced Features

116

Windows Filepaths

If you are using a Windows machine, filepaths usually include a drive letter (C:) at
the beginning of the pathname. Be sure to use "file:" in the path to avoid namespace
conflicts and get the desired results.

Example 15-8. using templates from windows file paths

/I from PHP script
$smarty->display(“file:C:/export/templates/index.tpl");
$smarty->display(“file:F:/path/to/my/templates/menu.tpl");

{* from within Smarty template *}
{include file="file:D:/usr/local/share/templates/navigation.tpl"}

Templates from other sources

You can retrieve templates using whatever possible source you can access with PHP:
databases, sockets, LDAP, and so on. You do this by writing resource plugin functions
and registering them with Smarty.

See resource plugins section for more information on the functions you are supposed
to provide.

Note: Note that you cannot override the built-in file resource, but you can provide a
resource that fetches templates from the file system in some other way by registering
under another resource name.

Example 15-9. using custom resources
/I from PHP script

/I put these function somewhere in your application
function db_get_template ($tpl_name, &S$tpl_source, &$smarty obj)
{
/l do database call here to fetch your template,
/I populating $tpl_source
$sgl = new SQL;
$sql->query("select tpl_source
from my_table
where tpl_name="$tpl_name™);
if ($sql->num_rows) {
$tpl_source = $sql->record['tpl_source’];
return true;
} else {
return false;
}

}

function db_get_timestamp($tpl_name, &$tpl_timestamp, &$smarty_obj)
{
/I do database call here to populate $tpl_timestamp.
$sgl = new SQL;
$sql->query("select tpl_timestamp
from my_table
where tpl_name="$tpl_name™);
if ($sgl->num_rows) {
$tpl_timestamp = $sql->record['tpl_timestamp’];
return true;
} else {

Chapter 15. Advanced Features

return false;

}
function db_get_secure($tpl_name, &$smarty_obj)

/I assume all templates are secure
return true;

}
function db_get_trusted($tpl_name, &$smarty_obj)

/I not used for templates

}

/I register the resource name "db"

$smarty->register_resource("db”, array("db_get_template",
"db_get_timestamp",
"db_get_secure",
"db_get_trusted"));

/I using resource from php script
$smarty->display("db:index.tpl");

{* using resource from within Smarty template *}
{include file="db:/extras/navigation.tpl"}

Default template handler function

You can specify a function that is used to retrieve template contents in the event the
template cannot be retrieved from its resource. One use of this is to create templates
that do not exist on-the-fly.

Example 15-10. using the default template handler function

<?php
/I put this function somewhere in your application

function make_template ($resource_type, $resource_name, &$template_source, &$tem-
plate_timestamp, &$smarty_obj)

if($resource_type == 'file’) {

if (! is_readable ($resource_name)) {
/I create the template file, return contents.
$template_source = "This is a new template.”;
$template_timestamp = time();
$smarty_obj->_write_file($resource_name,$template_source);
return true;

} else {
/Il not a file
return false;

}
}
/I set the default handler

$smarty->default_template_handler_func = 'make_template’;
?>

117

Chapter 15. Advanced Features

118

Chapter 16. Extending Smarty With Plugins

Version 2.0 introduced the plugin architecture that is used for almost all the customiz-
able functionality of Smarty. This includes:

functions
modifiers

block functions
compiler functions
prefilters
postfilters
outputfilters
resources

inserts

With the exception of resources, backwards compatibility with the old way of regis-
tering handler functions via register_* API is preserved. If you did not use the API
but instead modified the class variables $custom_funcs , $custom_mods , and other
ones directly, then you will need to adjust your scripts to either use the API or con-
vert your custom functionality into plugins.

How Plugins Work

Plugins are always loaded on demand. Only the specific modifiers, functions, re-
sources, etc invoked in the templates scripts will be loaded. Moreover, each plugin
is loaded only once, even if you have several different instances of Smarty running
within the same request.

Pre/postfilters and output filters are a bit of a special case. Since they are not men-
tioned in the templates, they must be registered or loaded explicitly via API functions
before the template is processed. The order in which multiple filters of the same type
are executed depends on the order in which they are registered or loaded.

There is only one plugins directory (for performance reasons). To install a plugin,
simply place it in the directory and Smarty will use it automatically.

Naming Conventions

Plugin files and functions must follow a very specific naming convention in order to
be located by Smarty.

The plugin files must be named as follows:

type . name.php

Where type is one of these plugin types:

function
modifier
block
compiler
prefilter
postfilter
outputfilter
resource
insert

119

Chapter 16. Extending Smarty With Plugins

And name should be a valid identifier (letters, numbers, and underscores only).

Some examples: function.html_select_date.php , resource.db.php ,
modifier.spacify.php

The plugin functions inside the plugin files must be named as follows:

smarty_ type _name

The meanings of type and name are the same as before.

Smarty will output appropriate error messages if the plugin file it needs is not found,
or if the file or the plugin function are named improperly.

Writing Plugins

Plugins can be either loaded by Smarty automatically from the filesystem or they
can be registered at runtime via one of the register_* API functions. They can also be
unregistered by using unregister_* API functions.

For the plugins that are registered at runtime, the name of the plugin function(s) does
not have to follow the naming convention.

If a plugin depends on some functionality provided by another plugin (as is the case
with some plugins bundled with Smarty), then the proper way to load the needed
plugin is this:

require_once SMARTY_DIR . ’plugins/function.html_options.php’;

As a general rule, Smarty object is always passed to the plugins as the last parameter
(except for modifiers).

Template Functions

120

void smarty_function_ name(array $params, object &$smarty);

All attributes passed to template functions from the template are contained in
the $params as an associative array. Either access those values directly, e.g.
$params['start’] or use extract($params) to import them into the symbol table.

The output (return value) of the function will be substituted in place of the func-
tion tag in the template (fetch function, for example). Alternatively, the function can
simply perform some other task without any output (assign function).

If the function needs to assign some variables to the template or use some other
Smarty-provided functionality, it can use the supplied $smarty object to do so.

See also: register_function(), unregister_function().

Example 16-1. function plugin with output

<?php

/*

* Smarty plugin

*

* File: function.eightball.php
* Type: function

* Name: eightball

*

Purpose: outputs a random magic answer

Chapter 16. Extending Smarty With Plugins

*
*
function smarty_function_eightball($params, &$smarty)

{

$answers = array('Yes',
'No’,
‘No way’,
'Outlook not so good’,
'’Ask again soon’,
'Maybe in your reality’);

$result = array_rand($answers);
return $answers[$result];

which can be used in the template as:

Question: Will we ever have time travel?
Answer: {eightball}.

Example 16-2. function plugin without output

<?php

/*

* Smarty plugin

*

* File: function.assign.php

* Type: function

* Name: assign

* Purpose: assign a value to a template variable
*

*/

function smarty_function_assign($params, &$smarty)

{

extract($params);

if (empty($var)) {

$smarty->trigger_error("assign: missing ’'var’ parameter");

return;

}

if (lin_array('value’, array_keys($params))) {

$smarty->trigger_error("assign: missing 'value’ parameter");

return;

}

$smarty->assign($var, $value);

121

Chapter 16. Extending Smarty With Plugins

Modifiers

122

Modifiers are little functions that are applied to a variable in the template before it is
displayed or used in some other context. Modifiers can be chained together.

mixed smarty_modifier_ name(mixed $value , [mixed $paraml, ..]);

The first parameter to the modifier plugin is the value on which the modifier is sup-
posed to operate. The rest of the parameters can be optional, depending on what kind
of operation is supposed to be performed.

The modifier has to return the result of its processing.

See also register_modifier(), unregister_modifier().

Example 16-3. simple modifier plugin

This plugin basically aliases one of the built-in PHP functions. It does not have any
additional parameters.

<?php
/*
* Smarty plugin
*
* File: modifier.capitalize.php
* Type: modifier
* Name: capitalize
* Purpose: capitalize words in the string
*
*
function smarty_modifier_capitalize($string)
{
return ucwords($string);
}
?>

Example 16-4. more complex modifier plugin

<?php

/*

* Smarty plugin

*

* File: modifier.truncate.php

* Type: modifier

* Name: truncate

* Purpose: Truncate a string to a certain length if necessary,
* optionally splitting in the middle of a word, and
* appending the $etc string.

*

*/
function smarty_modifier_truncate($string, $length = 80, $etc = ...,
$break_words = false)
{

if ($length == 0)
return ”

if (strlen($string) > $length) {
$length -= strlen($etc);
$fragment = substr($string, 0, $length+1);
if ($break_words)
$fragment = substr($fragment, 0, -1);
else

Chapter 16. Extending Smarty With Plugins

$fragment = preg_replace(N\s+(\S+)?$/, ”, $fragment);
return $fragment.$etc;
} else
return $string;

Block Functions

void smarty_block_ name(array $params, mixed $content , object
&$smarty);

Block functions are functions of the form: {func} .. {/func}. In other words, they en-
close a template block and operate on the contents of this block. Block functions take
precedence over custom functions of the same name, that is, you cannot have both
custom function {func} and block function {func} .. {/func}.

Your function implementation is called twice by Smarty: once for the opening tag,
and once for the closing tag.

Only the opening tag of the block function may have attributes. All attributes passed
to template functions from the template are contained in the $params as an associa-
tive array. You can either access those values directly, e.g. $params['start’] or use
extract($params) to import them into the symbol table. The opening tag attributes
are also accessible to your function when processing the closing tag.

The value of $content variable depends on whether your function is called for the
opening or closing tag. In case of the opening tag, it will be null , and in case of the
closing tag it will be the contents of the template block. Note that the template block
will have already been processed by Smarty, so all you will receive is the template
output, not the template source.

If you have nested block functions, it’s possible to find out what the parent block
function is by accessing $smarty->_tag_stack variable. Just do a var_dump() on it
and the structure should be apparent.

See also: register_block(), unregister_block().

Example 16-5. block function

<?php

/*

* Smarty plugin

*

* File: block.translate.php

* Type: block

* Name: translate

* Purpose: translate a block of text
*

*/
function smarty_block_translate($params, $content, &$smarty)

if ($content) {
$lang = $params[lang];
/I do some intelligent translation thing here with $content
echo $translation;

123

Chapter 16. Extending Smarty With Plugins

Compiler Functions

Compiler functions are called only during compilation of the template. They are use-
ful for injecting PHP code or time-sensitive static content into the template. If there
is both a compiler function and a custom function registered under the same name,
the compiler function has precedence.

mixed smarty_compiler_ name(string $tag_arg , object &$smarty);

The compiler function is passed two parameters: the tag argument string - basically,
everything from the function name until the ending delimiter, and the Smarty object.
It’s supposed to return the PHP code to be injected into the compiled template.

See also register_compiler_function(), unregister_compiler_function().

Example 16-6. simple compiler function

<?php
/*
* Smarty plugin
*
* File: compiler.tplheader.php
* Type: compiler
* Name: tplheader
* Purpose: Output header containing the source file name and
* the time it was compiled.
*
*/
function smarty_compiler_tplheader($tag_arg, &$smarty)
{
return "\necho ™ . $smarty- >_current_file . " compiled at " . date('Y-
m-d H:M’). ™"
}
?>

This function can be called from the template as:

{* this function gets executed at compile time only *}
{tplheader}

The resulting PHP code in the compiled template would be something like this:

<php
echo 'index.tpl compiled at 2002-02-20 20:02’;
?>

Prefilters/Postfilters

124

Prefilter and postfilter plugins are very similar in concept; where they differ is in the
execution -- more precisely the time of their execution.

string smarty_prefilter_ name(string $source , object &$smarty);

Prefilters are used to process the source of the template immediately before compi-
lation. The first parameter to the prefilter function is the template source, possibly
modified by some other prefilters. The plugin is supposed to return the modified
source. Note that this source is not saved anywhere, it is only used for compilation.

Chapter 16. Extending Smarty With Plugins

string smarty_postfilter_ name(string $compiled , object &$smarty);

Postfilters are used to process the compiled output of the template (the PHP code)
immediately after the compilation is done but before the compiled template is saved
to the filesystem. The first parameter to the postfilter function is the compiled tem-
plate code, possibly modified by other postfilters. The plugin is supposed to return
the modified version of this code.

Example 16-7. prefilter plugin

<?php
/*
* Smarty plugin
*
* File: prefilter.pre01.php
* Type: prefilter
* Name: pre01
* Purpose: Convert html tags to be lowercase.
*
*/
function smarty_prefilter_pre01($source, &$smarty)
{
return preg_replace(’! <(WwH)[>]+ >le’, 'strtolower("$1")’, $source);
}
?>

Example 16-8. postfilter plugin

<?php

/*

* Smarty plugin

*

* File: postfilter.post01.php

* Type: postfilter

* Name: post01l

* Purpose: Output code that lists all current template vars.

*

*/

function smarty_postfilter_post01($compiled, &$smarty)
$compiled = " <pre >\n <?php print_r(\$this- >get_template_vars()); ? >\n </pre >" . $cc
return $compiled;

}

?>

Output Filters

Output filter plugins operate on a template’s output, after the template is loaded and
executed, but before the output is displayed.

string smarty_outputfilter_ name(string $template_output , object
&$smarty);

The first parameter to the output filter function is the template output that needs to be
processed, and the second parameter is the instance of Smarty invoking the plugin.
The plugin is supposed to do the processing and return the results.

125

Chapter 16. Extending Smarty With Plugins

Example 16-9. output filter plugin

/*
* Smarty plugin
*
* File: outputfilter.protect_email.php
* Type: outputfilter
* Name: protect_email
* Purpose: Converts @ sign in email addresses to %40 as
* a simple protection against spambots
*
*/
function smarty_outpultfilter_protect_email($output, &$smarty)
{
return preg_replace('!(\S+)@([a-zA-Z0-9\.\-]+\.([a-zA-Z]{2,3}|[0-
9l{1,3})",
'$1%40%$2’, Soutput);
}
Resources

126

Resource plugins are meant as a generic way of providing template sources or PHP
script components to Smarty. Some examples of resources: databases, LDAP, shared
memory, sockets, and so on.

There are a total of 4 functions that need to be registered for each type of resource. Ev-
ery function will receive the requested resource as the first parameter and the Smarty
object as the last parameter. The rest of parameters depend on the function.

bool smarty_resource_ name_source (string $rsrc_name , string &$source ,
object &$smarty);

bool smarty resource_ name_timestamp (string $rsrc_name , int &$timestamp ,
object &$smarty);

bool smarty_resource_ name_secure (string $rsrc_name , object &$smarty);
bool smarty resource_ name_trusted (string $rsrc_name , object &$smarty);

The first function is supposed to retrieve the resource. Its second parameter is a vari-
able passed by reference where the result should be stored. The function is supposed
toreturntrue if it was able to successfully retrieve the resource and false otherwise.

The second function is supposed to retrieve the last modification time of the re-
quested resource (as a UNIX timestamp). The second parameter is a variable passed
by reference where the timestamp should be stored. The function is supposed to re-
turn true if the timestamp could be succesfully determined, and false otherwise.

The third function is supposed to return true or false , depending on whether the
requested resource is secure or not. This function is used only for template resources
but should still be defined.

The fourth function is supposed to return true or false , depending on whether the
requested resource is trusted or not. This function is used for only for PHP script com-
ponents requested by include_php tag or insert tag with src attribute. However, it
should still be defined even for template resources.

See also register_resource(), unregister_resource().

Chapter 16. Extending Smarty With Plugins

Example 16-10. resource plugin

<?php
/*
* Smarty plugin
*
* File: resource.db.php
* Type: resource
* Name: db
* Purpose: Fetches templates from a database
*
*/
function smarty_resource_db_source($tpl_name, &$tpl_source, &$smarty)
{
/l do database call here to fetch your template,
/I populating $tpl_source
$sgl = new SQL;
$sql->query("select tpl_source
from my_table
where tpl_name="$tpl_name™);
if ($sql->num_rows) {
$tpl_source = $sql->record['tpl_source’];
return true;
} else {
return false;
}
}
function smarty_resource_db_timestamp($tpl_name, &$tpl_timestamp, &$smarty)
{
/I do database call here to populate $tpl_timestamp.
$sql = new SQL;
$sql->query("select tpl_timestamp
from my_table
where tpl_name="$tpl_name™);
if ($sgl->num_rows) {
$tpl_timestamp = $sql->record['tpl_timestamp’];
return true;
} else {
return false;
}
}

function smarty_resource_db_secure($tpl_name, &$smarty)
/I assume all templates are secure
return true;

}

function smarty_resource_db_trusted($tpl_name, &$smarty)

/I not used for templates

Inserts

Insert plugins are used to implement functions that are invoked by insert tags in the
template.

string smarty_insert_ name(array ~ $params, object &$smarty);

127

Chapter 16. Extending Smarty With Plugins

128

The first parameter to the function is an associative array of attributes passed to
the insert. Either access those values directly, e.g. $params['start] or use ex-
tract($params) to import them into the symbol table.

The insert function is supposed to return the result which will be substituted in place
of the insert tag in the template.

Example 16-11. insert plugin

<?php

/*
* Smarty plugin
*

File: insert.time.php

Type: time

Name: time

Purpose: Inserts current date/time according to format

* Ok X F F

*/
function smarty_insert_time($params, &$smarty)
{
if (empty($params[format])) {
$smarty->trigger_error("insert time: missing 'format’ parameter");
return;

}

$datetime = strftime($params[format’);
return $datetime;

Chapter 17. Troubleshooting

Smarty/PHP errors

Smarty can catch many errors such as missing tag attributes or malformed variable
names. If this happens, you will see an error similar to the following;:

Example 17-1. Smarty errors

Warning: Smarty: [in index.tpl line 4]: syntax error: unknown tag - '%blah’
in /path/to/smarty/Smarty.class.php on line 1041

Fatal error: Smarty: [in index.tpl line 28]: syntax error: missing sec-
tion name
in /path/to/smarty/Smarty.class.php on line 1041

Smarty shows you the template name, the line number and the error. After that, the
error consists of the actual line number in the Smarty class that the error occured.

There are certain errors that Smarty cannot catch, such as missing close tags. These
types of errors usually end up in PHP compile-time parsing errors.

Example 17-2. PHP parsing errors
Parse error: parse error in /path/to/smarty/templates_c/index.tpl.php on line 75

When you encounter a PHP parsing error, the error line number will correspond to
the compiled PHP script, not the template itself. Usually you can look at the template
and spot the syntax error. Here are some common things to look for: missing close
tags for {if}{/if} or {section}{/section}, or syntax of logic within an {if} tag. If you
can’t find the error, you might have to open the compiled PHP file and go to the line
number to figure out where the corresponding error is in the template.

129

Chapter 17. Troubleshooting

130

Chapter 18. Tips & Tricks

Blank Variable Handling

There may be times when you want to print a default value for an empty variable
instead of printing nothing, such as printing " " so that table backgrounds work
properly. Many would use an {if} statement to handle this, but there is a shorthand
way with Smarty, using the default variable modifier.

Example 18-1. Printing when a variable is empty
{* the long way *}

{if $title eq "}

{else}

{$title}

{lif}

{* the short way *}

{$title|default:" "}

Default Variable Handling

If a variable is used frequently throughout your templates, applying the default mod-
ifier every time it is mentioned can get a bit ugly. You can remedy this by assigning
the variable its default value with the assign function.

Example 18-2. Assigning a template variable its default value

{* do this somewhere at the top of your template *}
{assign var="title" value=$title|default:"no title"}

{* if $titte was empty, it now contains the value "no title" when you print it *}
{$title}

Passing variable title to header template

When the majority of your templates use the same headers and footers, it is common
to split those out into their own templates and include them. But what if the header
needs to have a different title, depending on what page you are coming from? You
can pass the title to the header when it is included.

Example 18-3. Passing the title variable to the header template

mainpage.tpl

{include file="header.tpl" title="Main Page"}
{* template body goes here *}
{include file="footer.tpl"}

archives.tpl

131

Chapter 18. Tips & Tricks

Dates

132

{config_load file="archive_page.conf"}

{include file="header.tpl" title=#archivePageTitle#}
{* template body goes here *}

{include file="footer.tpl"}

header.tpl

<HEAD>
<TITLE >{$title|default:"BC News"} <I[TITLE >
</HEAD>
<BODY>

footer.tpl

</BODY>
</HTML>

When the main page is drawn, the title of "Main Page" is passed to the header.tpl,
and will subsequently be used as the title. When the archives page is drawn, the title
will be "Archives". Notice in the archive example, we are using a variable from the
archives_page.conf file instead of a hard coded variable. Also notice that "BC News"
is printed if the $title variable is not set, using the default variable modifier.

As arule of thumb, always pass dates to Smarty as timestamps. This allows template
designers to use date_format for full control over date formatting, and also makes it
easy to compare dates if necessary.

NOTE: As of Smarty 1.4.0, you can pass dates to Smarty as unix timestamps, mysql
timestamps, or any date parsable by strtotime().

Example 18-4. using date_format
{$startDate|date_format}
OUTPUT:

Jan 4, 2001

{$startDate|date_format:"%Y/%m/%d"}
OUTPUT:

2001/01/04

{if $datel < $date2}
{ify
When using {html_select_date} in a template, The programmer will most likely want

to convert the output from the form back into timestamp format. Here is a function
to help you with that.

Chapter 18. Tips & Tricks

Example 18-5. converting form date elements back to a timestamp

/I this assumes your form elements are named
/| startDate_Day, startDate_Month, startDate_Year

$startDate = makeTimeStamp($startDate_Year,$startDate_Month,$startDate_Day);
function makeTimeStamp($year="",$month="",$day="")

if(empty($year))

$year = strftime("%Y");
if(empty($month))

$month = strftime("%m");
if(empty($day))

$day = strftime("%d");

return mktime(0,0,0,$month,$day,$year);
}

WAP/WML

WAP /WML templates require a php Content-Type header to be passed along with
the template. The easist way to do this would be to write a custom function that
prints the header. If you are using caching, that won’t work so we’ll do it using the
insert tag (remember insert tags are not cached!) Be sure that there is nothing output
to the browser before the template, or else the header may fail.

Example 18-6. using insert to write a WML Content-Type header

/I be sure apache is configure for the .wml extensions!
/I put this function somewhere in your application, or in Smarty.addons.php
function insert_header() {

/I this function expects $content argument

extract(func_get_arg(0));

if(empty($content))

return;
header($content);
return;

}

/I your Smarty template _must_ begin with the insert tag example:
{insert name=header content="Content-Type: text/vnhd.wap.wml"}

<?xml version="1.0"? >
<IDOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN" "http://www.wapforum.org/DTD/wml_1.1.xml"

<!-- begin new wml deck -- >
<wml>

<!-- begin first card -- >
<card >

<do type="accept" >

<go href="#two"/ >

</do >

<p>

Welcome to WAP with Smarty!
Press OK to continue...

<lp >

<[card >

<!-- begin second card -- >
<card id="two" >

<p>

Pretty easy isn't it?
133

Chapter 18. Tips & Tricks

<Ilp >
</card >
</wml >

Componentized Templates

134

This tip is a bit of a hack, but still a neat idea. Use at your own risk. ;-)

Traditionally, programming templates into your applications goes as follows: First,
you accumulate your variables within your PHP application, (maybe with database
queries.) Then, you instantiate your Smarty object, assign the variables and display
the template. So lets say for example we have a stock ticker on our template. We
would collect the stock data in our application, then assign these variables in the
template and display it. Now wouldn't it be nice if you could add this stock ticker to
any application by merely including the template, and not worry about fetching the
data up front?

You can embed PHP into your templates with the {php}{/php} tags. With this, you
can setup self contained templates with their own data structures for assigning their
own variables. With the logic embedded like this, you can keep the template & logic
together. This way no matter where the template source is coming from, it is always
together as one component.

Example 18-7. componentized template
{* Smarty *}

{php}

/I setup our function for fetching stock data

function fetch_ticker($symbol,&$ticker_name,&S$ticker_price) {
/I put logic here that fetches $ticker_name

/I and S$ticker_price from some resource

}

/I call the function
fetch_ticker("YHOO", $ticker_name,$ticker_price);

/I assign template variables
$this->assign(“ticker_name",$ticker_name);
$this->assign("ticker_price",$ticker_price);

{/php}
Stock Name: {$ticker_name} Stock Price: {S$ticker_price}

As of Smarty 1.5.0, there is even a cleaner way. You can include php in your templates
with the {include_php ...} tag. This way you can keep your PHP logic separated from
the template logic. See the include_php function for more information.

Example 18-8. componentized template with include_php

load_ticker.php

<?php

/I setup our function for fetching stock data

function fetch_ticker($symbol,&$ticker_name,&S$ticker_price) {
/I put logic here that fetches $ticker_name
/I and S$ticker_price from some resource

}

Chapter 18. Tips & Tricks

/I call the function
fetch_ticker("YHOQ",$ticker_name,$ticker_price);

/I assign template variables
$this->assign(“ticker_name",$ticker_name);
$this->assign(“ticker_price",$ticker_price);

?>

index.tpl

{* Smarty *}
{include_php file="load_ticker.php"}

Stock Name: {$ticker_name} Stock Price: {$ticker_price}

Obfuscating E-mail Addresses

Do you ever wonder how your E-mail address gets on so many spam mailing lists?
One way spammers collect E-mail addresses is from web pages. To help combat this
problem, you can make your E-mail address show up in scrambled javascript in the
HTML source, yet it it will look and work correctly in the browser. This is done with
the mailto plugin.

Example 18-9. Example of Obfuscating an E-mail Address

index.tpl

Send inquiries to
{mailto address=$EmailAddress encode="javascript" subject="Hello"}

Technical Note: This method isn't 100% foolproof. A spammer could conceivably pro-
gram his e-mail collector to decode these values, but not likely.

135

Chapter 18. Tips & Tricks

136

Chapter 19. Resources

Smarty’s homepage is located at http://smarty.php.net/. You can join the mailing
list by sending an e-mail to smarty-general-subscribe@lists.php.net. An archive of the
mailing list can be viewed at http:/ /marc.theaimsgroup.com/?l=smarty&r=1&w=2

137

Chapter 19. Resources

138

Chapter 20. BUGS

Check the BUGS file that comes with the latest distribution of Smarty, or check the
website.

139

Chapter 20. BUGS

140

	Smarty the compiling PHP template engine
	Table of Contents
	Preface
	Chapter 1. What is Smarty?
	Chapter 2. Installation
	Requirements
	Basic Installation
	Extended Setup

	Chapter 3. Basic Syntax
	Comments
	Functions
	Attributes
	Embedding Vars in Double Quotes

	Chapter 4. Variables
	Variables assigned from PHP
	Associative arrays
	Array indexes
	Objects

	Variables loaded from config files
	{$smarty} reserved variable
	Request variables
	{$smarty.now}
	{$smarty.const}
	{$smarty.capture}
	{$smarty.config}
	{$smarty.section}, {$smarty.foreach}
	{$smarty.template}

	Chapter 5. Variable Modifiers
	capitalize
	countcharacters
	cat
	countparagraphs
	countsentences
	countwords
	dateformat
	default
	escape
	indent
	lower
	nl2br
	regexreplace
	replace
	spacify
	stringformat
	strip
	striptags
	truncate
	upper
	wordwrap

	Chapter 6. Combining Modifiers
	Chapter 7. Builtin Functions
	capture
	configload
	foreach,foreachelse
	include
	includephp
	insert
	if,elseif,else
	ldelim,rdelim
	literal
	php
	section,sectionelse
	index
	indexprev
	indexnext
	iteration
	first
	last
	rownum
	loop
	show
	total

	strip

	Chapter 8. Custom Functions
	assign
	counter
	cycle
	debug
	eval
	fetch
	htmlcheckboxes
	htmlimage
	htmloptions
	htmlradios
	htmlselectdate
	htmlselecttime
	htmltable
	math
	mailto
	popupinit
	popup
	textformat

	Chapter 9. Config Files
	Chapter 10. Debugging Console
	Chapter 11. Constants
	SMARTYDIR

	Chapter 12. Variables
	$templatedir
	$compiledir
	$configdir
	$pluginsdir
	$debugging
	$debugtpl
	$debuggingctrl
	$globalassign
	$undefined
	$autoloadfilters
	$compilecheck
	$forcecompile
	$caching
	$cachedir
	$cachelifetime
	$cachehandlerfunc
	$cachemodifiedcheck
	$configoverwrite
	$configbooleanize
	$configreadhidden
	$configfixnewlines
	$defaulttemplatehandlerfunc
	$phphandling
	$security
	$securedir
	$securitysettings
	$trusteddir
	$leftdelimiter
	$rightdelimiter
	$compilerclass
	$requestvarsorder
	$compileid
	$usesubdirs
	$defaultmodifiers

	Chapter 13. Methods
	append
	appendbyref
	assign
	assignbyref
	clearallassign
	clearallcache
	clearassign
	clearcache
	clearcompiledtpl
	clearconfig
	configload
	display
	fetch
	getconfigvars
	getregisteredobject
	gettemplatevars
	iscached
	loadfilter
	registerblock
	registercompilerfunction
	registerfunction
	registermodifier
	registerobject
	registeroutputfilter
	registerpostfilter
	registerprefilter
	registerresource
	triggererror
	templateexists
	unregisterblock
	unregistercompilerfunction
	unregisterfunction
	unregistermodifier
	unregisterobject
	unregisteroutputfilter
	unregisterpostfilter
	unregisterprefilter
	unregisterresource

	Chapter 14. Caching
	Setting Up Caching
	Multiple Caches Per Page
	Cache Groups

	Chapter 15. Advanced Features
	Objects
	Prefilters
	Postfilters
	Output Filters
	Cache Handler Function
	Resources
	Templates from $templatedir
	Templates from any directory
	Windows Filepaths

	Templates from other sources
	Default template handler function

	Chapter 16. Extending Smarty With Plugins
	How Plugins Work
	Naming Conventions
	Writing Plugins
	Template Functions
	Modifiers
	Block Functions
	Compiler Functions
	Prefilters/Postfilters
	Output Filters
	Resources
	Inserts

	Chapter 17. Troubleshooting
	Smarty/PHP errors

	Chapter 18. Tips & Tricks
	Blank Variable Handling
	Default Variable Handling
	Passing variable title to header template
	Dates
	WAP/WML
	Componentized Templates
	Obfuscating Email Addresses

	Chapter 19. Resources
	Chapter 20. BUGS

